
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

EPE2017: Towards a Reusable Infrastructure for
Automated Extrinsic Parser Evaluation

Anonymous ACL submission

Abstract

1 Introduction & Motivation

2 Methodological Challenges

3 Related Work

Even though the bulk of work on parser evaluation
focuses on intrinsic evaluation, there have been a
few previous studies devoted to extrinsic parser
evaluation and more specifically on the comparison
of different types of syntactic representations.

Miyao et al. (2008) compare the performance
of constituent-based, dependency-based and deep
linguistic parsers on the task of identifying protein–
protein interactions (PPI) in biomedical text. The
dependency-based parsers assign a CoNLL-style
analysis (see below) and are compared to PTB-style
constituent parsers and the HPSG-based ENJU
parser and the authors find comparable results for
all three repsentations while emphasizing the im-
portance of domain adaptation for all parsers.

Johansson and Nugues (2008) also contrast
constituent-based PTB and dependency-based LTH
and CoNLL07 representations in the down-stream
task of semantic role labeling. They find that
the dependency-based systems performs slightly
better in the subtask of argument classification
and whereas the constituent-based parsers achieve
slightly higher results in argument identification.
They further find that the LTH dependency scheme
performs better than the CoNLL07 scheme in the
task of argument classification.

The previous work that is most similar to ours
is that of Elming et al. (2013), where the focus is
on comparison of different types of dependency
representations and their contributions over several
different downstream tasks: negation resolution, se-
mantic role labeling, statistical machine translation,

sentence compression and perspective classifica-
tion. They contrast the performance of the same
parser trained on various dependency conversions
of the Penn Treebank: the Yamada–Matsumoto
scheme, the CoNLL-X representation (based on
the LTH converter of Johansson and Nugues (2007)
using the -conll07 flag), the conversion scheme
used in the English Web Treebank (based on the
Stanford basic scheme (de Marneffe et al., 2006))
and the LTH scheme (based on the LTH converter
of Johansson and Nugues (2007) using the -oldLTH
flag). Elming et al. (2013) find that the choice of
dependency representation has clear effects on the
downstream results and furthermore that these ef-
fects vary depending on the task. For negation
resolution for instance, the Yamada scheme per-
forms best, whereas the Stanford and LTH schemes
provide superior SRL performance.

Although the main focus of this task is on the
comparison of different representations, there are
of course several other important dimensions of
variation that will affect the results. On such dimen-
sion is the choice of parser and parsing strategy, for
example; parsing directly to a dependency repre-
sentation; parsing to constituent trees and then con-
verting this to dependencies; and possibly augment-
ing the initial dependency representation with ad-
ditional information through post-processing. The
choice of training data will also have an impact, in
addition to the pre-processing (sentence segmenta-
tion, tokenization, etc.).

4 Dependency-Based
Syntactico-Semantic Analysis

Figure 1 presents a range of different depen-
dency analyses for the example sentence A similar
technique is almost impossible to apply to other
crops. In (a) we see the analysis employed in the
CoNLL08 shared task (?), obtained by converting

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

A similar technique is almost impossible to apply to other crops .
DT JJ NN VBZ RB JJ TO VB TO JJ NNS P

NMOD

NMOD SBJ

P

AMOD

PRD

AMOD IM ADV NMOD

PMOD

(a) CoNLL 2008 (LTH) dependencies

A similar technique is almost impossible to apply to other crops .
DT JJ NN VBZ RB JJ TO VB TO JJ NNS .

det

amod

nsubj

cop

advmod aux

dep

prep amod

pobj

punct

(b) Stanford basic

A similar technique is almost impossible to apply to other crops .
DET ADJ NOUN AUX ADV ADJ PART VERB ADP ADJ NOUN PUNCT

det

amod

nsubj

cop

advmod

punct

mark

ccomp

obl

amod

case

obj

(c) Universal Dependencies (enhanced in red)

A similar technique is almost impossible to apply to other crops.
DT JJ NN VBZ RB JJ TO VB TO JJ NNS

ARG2 ARG3
ARG1ARG1

BV

ARG1 ARG1

(d) DELPH-IN Minimal Recursion Semantics–derived bi-lexical dependencies (DM)

A similar technique is almost impossible to apply to other crops.
DT JJ NN VBZ RB JJ TO VB TO JJ NNS P

RSTR

PAT-arg
ACT-arg

EXT

PAT-arg
ADDR-arg

RSTR

(e) Parts of the tectogrammatical layer of the Prague Czech-English Dependency Treebank
(PSD)

Figure 1: Dependency representations in (a) CoNLL08, (b) Stanford basic, (c) Universal Dependencies,
(d) DM and (e) PSD.

PTB trees with the LTH pennconverter software
(Johansson and Nugues, 2007), which relies on
head finding rules (?) and the functional annota-
tion already present in the PTB annotation. The
Stanford basic representation in (b), is also a result
of a conversion from PTB-style phrase structure
trees—combining head finding rules with rules that
target specific linguistic constructions, such as pas-
sives or attributive adjectives (de Marneffe et al.,
2006). The Universal Dependencies (UD) repre-
sentation in (c) (?) builds on several previous initia-
tives for universally common morphological (??)
and syntactic dependency (??) annotation. This

representation was employed in the recent CoNLL
2017 shared task (?), which was devoted to mul-
tilingual parsing from raw text for more than 40
different languages.

Whereas the three first representations are
largely syntactic in nature, the following two pro-
vide examples of so-called semantic dependency
representations: the DELPH-IN Minimal Recur-
sion Semantics–derived dependencies (DM) in (d)
and dependencies derived from the tectogrammati-
cal layer of the Prague Czech-English Dependency
Treebank (PSD) in (e).

The representations vary along several dimen-

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

sions. First, we can distinguish between largely
syntactic and semantic dependency representations.
These vary both in terms of formal properties and
the dependency relations employed. The syntac-
tic representations, corresponding to the first three
representations in Figure 1 largely assume that the
dependency graphs are rooted trees, in the formal
sense where every node can be reached via a single
directed path from a distinguished root node1. The
semantic dependency graphs, on the other hand,
do not make this assumption and can be charac-
terized formally as labeled directed graphs which
allow for both node re-entrancies (such as that ex-
amplified by the token technique in (d)) and partial
connectivity of the graph, i.e. leaving functional
tokens, like infinitival markers and prepositions
unanalyzed. The syntactic and semantic represen-
tations typically also differ in terms of dependency
relation inventory. Whereas, the syntactic analy-
ses are based on morphosyntactic categories and
syntactic functions, the semantic relations encode
deep arguments of predicates, and semantic roles.

Among the syntactic representations, we may
distinguish between dependency representations
that take a largely functional view of head status—
e.g. functional elements like auxiliaries, subjunc-
tions, and infinitival markers are heads—and more
content-centered approaches where the lexical
verbs or arguments of the copula are heads. In
Figure 1 we observe that the CoNLL08 representa-
tion in (a) employs a functional head strategy (ap-
pointing the copula and infinitival marker as head),
whereas the Stanford scheme largely chooses con-
tent words as heads. The UD scheme, which is
clearly based on the Stanford scheme and has many
similarities to it, takes this even further and ad-
ditionally analyzes prepositional complements as
heads (with prepositions as dependent case mark-
ers).

5 Definitions for the Task

Dependency Representation

Parsing System

Downstream Application

1Note however that this assumption does not hold for the
UD representations in their v2.0 which also introduces so-
called enhanced dependencies, which are not required to be
trees.

6 The EPE Dependency Interchange
Format

7 Downstream Applications

7.1 Biological Event Extraction

Event extraction refers to the detection of complex
semantic relations. It differs from pairwise relation
extraction in that events 1) have a defined trigger
word (usually a verb) 2) can have 1–n arguments
and 3) events can act as arguments of other events,
leading to complex nested structures.

The Turku Event Extraction System (TEES) is
a machine learning tool developed for the detec-
tion of events in biomedical texts (Björne, 2014).
In the EPE Challenge the event dataset used for
training and evaluation is the GENIA corpus from
the BioNLP’09 Shared Task, the task for which
TEES was originally built (Kim et al., 2009). This
corpus defines nine types of biochemical events an-
notated for over 10k sentences. A typical GENIA
annotation could be for example for the sentence
“Protein A regulates the binding of proteins B and
C” a nested two-event structure REGULATION(A,
BINDING(B, C)).

Similarly to dependency parses, events can also
be seen as graphs, with triggers and other entities as
the nodes, and event arguments as the edges. The
trigger entity acts as the root node of the subgraph
that is a single event, and as the child node for
argument edges of any nesting events. TEES is
built around the event graph concept, treating event
extraction as a graph prediction task implemented
with consecutive SVM classification steps.

TEES event prediction proceeds in three main
steps. First, entities are detected by classifying
each word token into one of the entity classes, or
as a negative. Second, event argument edges are
predicted for each valid pair of detected entities. In
the resulting graph there can be only one entity per
word token, but multiple events can be annotated
for a single word. Therefore, the final step con-
sists of unmerging predicted, overlapping events
to produce the final event graph. As an optional
fourth step, binary modifiers (such as negation or
speculation) can be predicted for each event.

TEES relies heavily on dependency parses for
machine learning example generation. The depen-
dency parse graphs and the event annotation graphs
are aligned at the level of word tokens, after which
the prediction of an event graph for a sentence
can be thought of as converting the syntactic depen-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

dency parse into the semantic event graph. In entity
detection, features include POS tags, information
about nearby tokens in the linear order, but also
token and dependency n-grams built for all depen-
dency paths within a limited distance, originating
from the candidate entity token. In edge detection,
the primary features are built from n-grams con-
structed from the shortest path of dependencies.

Annotated event entities may not correlate ex-
actly with the syntactic tokenization, so entities are
aligned with the parses by using a heuristic to find
a single head token for each entity. This means that
in addition to the dependency graph, and POS and
dependency type labeling, the granularity of the
tokenization can influence TEES performance.

7.2 Opinion Analysis
The opinion analysis system by Johansson and
Moschitti (2013) marks up expressions of opinion
and emotion in running text. It uses the annota-
tion model and the annotated corpus developed in
the MPQA project (Wiebe et al., 2005). The main
component in this annotation scheme is the opinion
expression, which can be realized linguistically in
different ways. Examples of opinion expressions
are enjoy, criticize, wonderful, threat to humanity.
Each opinion expression is connected to an opin-
ion holder, a lingustic expression referring to the
person expressing the opinion or experiencing the
emotion. In some cases, this entity is not explicitly
mentioned in the text, for instance if it is the author
of the text. Furthermore, every non-objective opin-
ion expression is tagged with a polarity: positive,
negative, or neutral.

To exemplify, in the sentence

“The report is full of absurdities,” Xirao-Nima said.

the expression full of absurdities and said are opin-
ion expressions with a negative polarity, and Xirao-
Nima the opinion holder of these two expressions.

The system by Johansson and Moschitti (2013)
required a number of modifications in order to
make it agnostic to the structure of the input rep-
resentation. The original implementation made
strong assumptions that the input conforms to the
linguistic model of the CoNLL-2008 shared task
(Surdeanu et al., 2008), which represents sentences
using two separate dependency graphs (syntactic
and semantic). For this reason, feature extraction
functions needed to be reengineered so that they do
not assume a particular set of dependency edge la-
bels or part-of-speech tags, or that the dependency

graph has any particular structure. Most impor-
tantly, this relaxation has an impact on features that
represent syntactic relations via paths in the de-
pendency graph; since the graph is not necessarily
a tree, the new model represents a set of shortest
paths instead of a single unique path.

7.2.1 Evaluation Metrics
In the EPE shared task, we evaluated the systems
in three different subtasks, corresponding to the
evaluations by Johansson and Moschitti (2013):

• marking up opinion expressions in the text,
and determining their linguistic subtype; for
instance, in the example the expression full
of absurdities) is an expressive-subjective el-
ement (ESE) and said a direct-subjective ex-
pression (DSE);

• determining the opinion holder for every ex-
tracted opinion expression; for instance, that
Xirao-Nima is the holder of the two expres-
sions in the example;

• determining the polarity of each extracted sub-
jective expression, for instance that the two
expressions in the examples are both negative.

For each of these subtasks, precision and recall
measures were computed. As explained by Wiebe
et al. (2005), the boundaries of opinion expressions
can be hard to define rigorously, which motivates
the use of a “soft” method for computing the preci-
sion and recall: for instance, if a system proposes
just absurdities instead of the correct full of absur-
dities, this is counted as partially correct. [NB: I’m
not sure what you decided in the end.] For the fi-
nal ranking of systems, we used the macro-average
of the F-scores in the three subtasks.

Furthermore, for the detailed analysis we evalu-
ated the opinion holder extractor separately, using
gold-standard opinion expressions. We refer to this
task as in vitro holder extraction. The reason for
investigating holder extraction separately is that
this task is highly dependent on the design of the
dependency representation, and as we will see in
the empirical results this is also the subtask where
we see most of the variation in performance.

7.3 Negation Resolution
The Negation Resolution (NR) system (Sherlock;
Lapponi et al., 2012) determines, for a given sen-
tence, the scope of negation cues. The system
is built on the annotations of the ConanDoyle-
neg data set (CD; Morante and Daelemans, 2012),

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

where cues can be either full tokens (e.g. not) or
subtokens (un in unfortunate) and their scopes, i.e.
the (sub-) tokens they affect. Additionally, in-scope
tokens are marked as negated events or states, pro-
vided that the sentence in question is factual and
the the events in question did not take place. In the
example

Since we have been so unfortunate as to miss him [. . .]

the cue (in bold) affects the proposition we have
been so fortunate as to miss him (its scope, under-
lined), and fortunate is its negated event.

Sherlock looks at NR as a classical sequence la-
beling problem. The main component in the Sher-
lock pipeline is Wapiti (Lavergne et al., 2010), an
open source implementation of a Conditional Ran-
dom Field (CRF) classifier, a discriminative model
for sequence labeling. The token-wise annotations
in CD contain multiple layers of information. To-
kens may or may not be negation cues and they can
be either in or out of scope; in-scope tokens may or
may not be negated events, and are associated with
each of the cues they are negated by. Moreover,
scopes may be (partially or fully) overlapping, with
cues affecting other cues and their scopes. Before
presenting the CRF with the annotations, Sherlock
flattens the scopes, converting the CD representa-
tion internally by assigning one of six labels to each
token: out-of-scope, cue, substring cue, in-scope,
event and negation stop (defined as the first out-of-
scope token after a sequence of in-scope tokens)
respectively.

The model’s feature set includes different com-
binations of token-level observations, such as sur-
face forms, part-of-speech tags, lemmas and depen-
dency labels. In addition, we extract both token and
dependency distance to the nearest cue, together
with the full shortest dependency path. After clas-
sification, the full (overlapping) annotations are
reconstructed using a set of post-processing heuris-
tics. It is important to note that one of these heuris-
tics in previous Sherlock builds took advantage of
the original annotations directly to help with fac-
tuality detection; when a token classified with as
a negated event appeared within a certain range of
a token tagged as a modal (the MD tag), its label
was changed from negated event to in-scope. In
order to accommodate arbitrary tag-sets, this step
was removed.

Evaluation measures for Sherlock runs in the
EPE shared task include scope tokens (ST), event
match (EM), scope match (SM), and full negation

(FN) F1 scores. ST and EM are token level scores
for in-scope and negated event tokens respectively,
where a true positive is a correctly retrieved to-
ken instance of the relevant class. The remaining
measures are stricter, counting true positives as
perfectly retrieved full scopes, including (FN) and
excluding (SM) negated events.

8 Participating Teams

9 Experimental Results

10 High-Level Reflections

11 Conclusion & Outlook

Acknowledgments

Richard Johansson was supported by the Swedish
Research Council under grant 2013–4944.

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Event Extraction Negation Resolution Opinion Analysis

Team Run Representation P R F P R F P R F Avg Rank

ECNU

0 UD v2.0 49.48 39.00 43.62 99.17 45.45 62.33 60.27 57.42 58.81 54.92
1 UD v2.0 50.72 38.97 44.08 99.17 45.45 62.33 62.86 60.04 61.42 55.94
2 UD v2.0 52.24 40.23 45.46 99.17 45.45 62.33 62.15 59.75 60.93 56.24 5
3 UD v2.0 54.53 35.58 43.06 99.18 45.83 62.69 62.11 58.17 60.08 55.28
4 UD v2.0 60.69 35.76 45.00 99.15 43.94 60.89 63.32 61.07 62.17 56.02

Paris
and

Stanford

0 DM 59.11 37.71 46.04 99.12 42.80 59.78 65.04 51.32 57.37 54.40
1 PAS 52.39 40.98 45.99 99.09 41.29 58.29 65.80 52.73 58.54 54.27
2 UD v1 basic 55.79 44.56 49.55 99.04 39.02 55.98 65.87 61.30 63.50 56.34
3 UD v1 enh 57.48 41.64 48.29 99.06 39.77 56.75 66.22 62.43 64.27 56.44
4 UD v1 enh++ 58.55 39.50 47.17 99.03 38.64 55.59 65.10 61.75 63.38 55.38
5 UD v1 enh++ dia 55.58 43.37 48.72 99.03 38.64 55.59 66.62 62.03 64.24 56.18
6 UD v1 enh++ dia– 58.11 39.19 46.81 99.06 39.77 56.75 64.21 60.27 62.18 55.25
7 UD v1 basic 57.69 42.80 49.14 99.05 39.39 56.36 65.78 60.96 63.28 56.26
8 UD v1 enh 54.90 44.75 49.31 99.07 40.15 57.14 65.59 62.42 63.97 56.81 3
9 UD v1 enh++ 58.03 43.02 49.41 99.04 39.02 55.98 66.77 61.04 63.78 56.39

10 UD v1 enh++ dia 59.88 40.19 48.10 98.97 36.36 53.18 65.86 60.92 63.29 54.86
11 UD v1 enh++ dia– 58.92 40.07 47.70 99.06 39.77 56.75 64.90 60.56 62.65 55.70

Peking

0 DM 59.28 34.22 43.39 99.15 43.94 60.89 65.63 53.64 59.03 54.44
1 CCD 58.26 40.07 47.48 99.15 44.32 61.26 66.57 54.55 59.96 56.23 6
2 DM
3 CCD
4 DM 99.10 41.67 58.67 65.74 53.66 59.09
5 CCD 99.12 42.42 59.41 66.97 54.84 60.30

Prague

0 UD v2.0 53.84 36.61 43.58 99.10 41.83 58.83 62.61 57.21 59.79 54.07
1 UD v2.0 56.35 38.21 45.54 99.16 44.70 61.62 62.31 59.74 61.00 56.05 7
2 UD v2.0 53.22 37.87 44.25 99.12 42.97 59.95 63.45 54.63 58.71 54.30
3 UD v2.0 51.91 36.27 42.70 99.12 42.97 59.95 61.26 56.72 58.90 53.85
4 UD v1.2 51.71 37.12 43.22 98.90 34.22 50.85 61.00 56.25 58.53 50.86

Stanford
and

Paris

0 Stanford Basic 56.93 45.03 50.29 99.22 48.48 65.13 67.26 60.54 63.72 59.71
1 UD v1 basic 57.59 40.76 47.73 99.19 46.21 63.05 67.47 61.30 64.24 58.34
2 UD v1 enh 57.24 40.98 47.76 99.20 46.97 63.75 67.69 61.02 64.18 58.57
3 UD v1 enh++ 56.76 42.74 48.76 99.21 47.35 64.10 67.43 61.58 64.37 59.08
4 UD v1 enh++ dia 58.86 40.51 47.99 99.19 46.21 63.05 66.68 61.95 64.23 58.42
5 UD v1 basic 58.75 42.21 49.13 99.22 48.11 64.80 68.18 61.56 64.70 59.54
6 UD v1 enh 58.36 44.09 50.23 99.24 49.62 66.16 68.86 61.81 65.14 60.51 1
7 UD v1 enh++ 62.30 41.55 49.85 99.20 46.97 63.75 68.44 62.25 65.20 59.60
8 UD v1 enh++ dia 57.47 44.47 50.14 99.21 47.73 64.45 67.64 62.57 65.01 59.87
9 UD v1 enh++ dia– 55.29 43.21 48.51 99.16 44.70 61.62 66.68 61.42 63.94 58.02

10 UD v1 enh++ dia– 57.22 42.83 48.99 99.22 48.48 65.13 67.30 62.01 64.55 59.56

Szeged

0 60.20 39.69 47.84 99.17 45.08 61.98 66.73 65.04 65.87 58.57 2
1 59.09 39.53 47.37 99.14 43.56 60.53 67.04 65.63 66.33 58.07
2 57.93 39.13 46.71 99.15 44.32 61.26 66.05 60.45 63.13 57.03
3 55.14 40.48 46.69 99.12 42.80 59.78 65.35 61.28 63.25 56.57
4 55.12 39.41 45.96 99.11 42.05 59.05 63.37 61.66 62.50 55.84

UPF
0 SSyntS 53.21 41.36 46.54 99.12 42.80 59.78 66.25 61.19 63.62 56.65 4
1 DSyntS 54.06 39.94 45.94 98.15 20.08 33.34 64.65 56.71 60.42 46.57
2 PredArg 56.37 39.63 46.54 97.96 18.18 30.67 61.03 51.50 55.86 44.36

UW 0 DM 54.86 35.14 42.84 99.06 39.77 56.75 67.31 54.41 60.18 53.26 8

Table 1: Summary of results. For the Paris/Stanford runs, ‘enh’ is short for ‘enhanced’ and ‘dia’ for
‘diathesis’. The best F-scores for each team for each task are indicated with bold face, while the globally
best scores are indicated with bold and italics. ‘Avg’ shows the average F1 across tasks.

