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Abstract

This paper describes Sherlock, a general-
ized update to one of the top-performing
systems in the *SEM 2012 shared task
on Negation Resolution. The system
and the original negation annotations have
been adapted to work across different seg-
mentation and morpho-syntactic analysis
schemes, making Sherlock suitable to study
the downstream effects of different ap-
proaches to pre-processing and grammati-
cal analysis on negation resolution.

1 Introduction & Motivation

Negation Resolution (NR) is the task of determin-
ing, for a given sentence, which part of the lin-
guistic signal is affected by a negation cue. The
2012 shared task at the First Joint Conference on
Lexical and Computational Semantics (*SEM) is a
notable effort in NR research (Morante and Blanco,
2012), providing the field with a sizable human-
annotated corpus for negation (the first outside the
biomedical domain), a standardized set of evalua-
tion metrics, as well as empirical NR results from
eight competing teams. Our NR system, Sherlock
(Lapponi et al., 2012b), ranked first and second
in the open and closed tracks, respectively. It has
later been used as a pre-processor for Sentiment
Analysis (Lapponi et al., 2012a) and, due to its re-
liance on dependency-based features, as a means
of evaluating different dependency representations
extrinsically (Elming et al., 2013; Ivanova et al.,
2013).

These latter efforts served as an inspiration for
the 2017 shared task on Extrinsic Parser Evaluation
(EPE 2017; Oepen et al., 2017). Here, participants
are invited to provide fully pre-processed and syn-
tactically parsed inputs to three dowstream systems
addressing different tasks: biological event extrac-

tion (Björne et al., 2017) and fine-grained opinion
analysis (Johansson, 2017), in addition to NR. Al-
though Sherlock and the *SEM 2012 negation data
have already been used for extrinsic dependency
parsing evaluation, the novelty of the current work
lies in the fact that the aforementioned earlier work
assumed dependency graphs obtained over uniform,
gold-standard sentence and token boundaries, as
defined by the original token-level annotations of
Morante and Daelemans (2012). In contrast, for
use of Sherlock in conjunction with a diverse range
of parsers that each start from ‘raw’, unsegmented
text, the NR set-up had to be generalized to allow
‘projection’ of the original, token-level annotations
to variable segmentations, both during training and
evaluation. In the remainder of this paper we will
provide an overview of the task of NR as defined by
the annotations in the *SEM 2012 negation data, de-
scribe the process of generalizing the gold-standard
negation annotations to arbitrary character spans,
summarize the generalized Sherlock pipeline, and
discuss the EPE 2017 end-to-end results for nega-
tion resolution.

2 The Conan Doyle Data

The *SEM 2012 negation data annotate a collec-
tion of fiction works by Sir Arthur Conan Doyle
(Morante and Daelemans, 2012), henceforth CD.
The CD data is comprised of the following anno-
tated stories: a training set of 3644 sentences drawn
from The Hound of the Baskervilles, a development
set of 787 sentences taken from Wisteria Lodge,
and a held-out evaluation set of 1089 sentences
from The Cardboard Box and The Red Circle.

The negation annotations in these sets are com-
prised of so-called negation cues (linguistic signals
of negation), which can be either full tokens (e.g.
not or without) or sub-tokens (un in unfortunate or
n’t in contracted negations like can’t); for each cue,



we   have  never  gone  out  without  keeping  a  sharp  watch  ,  and  no  one  could  have  escaped  our  notice  .  "
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Figure 1: An example of how overlapping CD scope annotations are converted to flat sequences of labels.
In this example, an in-scope token is labeled with N, a cue with CUE, a negated event with E, a negation
stop with S, and an out-of-scope token with O.

the annotations further comprise its scope, i.e. the
(sub-)tokens that are affected by the negation. Ad-
ditionally, in-scope tokens are marked as negated
events or states, provided that the sentence in ques-
tion is factual, and the events in question did not
take place. Consider the two following examples
from the data, where cues are shown in angle brack-
ets, in-scope tokens in braces, and negated events
are underlined:

(1) Since {we have been so} 〈un〉{fortunate as to miss
him} [. . . ]

(2) If {he was} in the hospital and yet 〈not〉 {on the staff}
he could only have been a house-surgeon or a house-
physician: little more than a senior student.

Notice that negation scopes extend to full propo-
sitions (the prefix un in example (1) negates that
we have been so fortunate as to miss him), and
that example (2) annotates no negated event, since
the sentence is non-factual. Scopes may further be
discontinuous, as in example (2). Oftentimes there
can be multiple instances of negation within one
sentence, and their respective scopes may overlap
or nest within each other.

3 Annotation Projection

One generalization that had to be made to Sher-
lock for use in the EPE 2017 shared task is related
to segmentation into ‘sentences’ and tokens. The
original *SEM 2012 negation data is annotated in
a token-oriented format, inspired by a series of
shared tasks at the conferences for Computational
Natural Language Learning (CoNLL), where ba-
sic units of annotation are tokens—one per line, in
a plain text file, with annotations separated from
surface tokens by tabulator characters. Conversely,
the EPE 2017 task design starts from ‘raw’ running
text, i.e. participating parsers are expected to apply
their own sentence splitting and tokenization. Thus,
no specific segmentation conventions are imposed
on parser outputs.

In order to use the *SEM 2012 negation data
over arbitrary and diverse base segmentations, we

developed a separate ‘projection’ step that (a) con-
verts the gold-standard negation annotations into
character-level (stand-off) spans, (b) projects these
spans onto a dependency graph provided by a par-
ticipating parser, and (c) serializes the enriched
graph in the token-oriented *SEM 2012 file for-
mat, for Sherlock training and evaluation. In other
words, annotation projection creates a ‘personal-
ized’ version of the negation annotations for each
individual segmentation, i.e. each distinct parser
output. Annotation projection crucially depends
on accurate character-level stand-off pointers into
the underlying ‘raw’ document. As these were not
available for the original *SEM 2012 negation data,
we adapted the alignment tool of Dridan and Oepen
(2013) to determine the correspondences from sur-
face tokens in the annotations to sub-strings of the
original documents.1

Conceptually, annotation projection is fairly
straightforward: The *SEM 2012 negation annota-
tions include both sub-token and multi-token nega-
tion cues and scopes, for example the prefix un or
the multi-word by no means. Projection of nega-
tion annotations onto a different segmentation (with
fewer, additional, or just different sentence and to-
ken boundaries) may thus move some negation in-
stances into or out of the sub-token and multi-token
categories, but both types are treated transparently
in Sherlock as well as in the official *SEM 2012
scorer. In principle, we could evaluate final nega-
tion predictions (by Sherlock, for a specific parser)
against the gold-standard segmentation, by apply-
ing a ‘reverse’ projection from the enriched de-
pendency graph. However, for practical simplicity
we opt to evaluate on the ‘native’ segmentation
of the parser directly, i.e. invoke the *SEM 2012
negation scorer on the projected, ‘personalized’

1The alignment tool applies dynamic programming to
compute the globally optimal solution, using the Needleman–
Wunsch algorithm, taking into account common normaliza-
tions applied during tokenization, e.g. conversion from multi-
character ASCII sequences for different-length dashes or vari-
ous quote marks to corresponding Unicode glyphs.



Features bigram trigram +token +lemma

token • •
lemma
pos-tag • • •

first-order dependency pos-tag
second-order dependency pos-tag

dependency relation
right token distance from cue

left token distance from cue
dependency distance from cue

dependency path from cue •

Table 1: Features used to train the conditional random field models (on the left), combined with to-
ken/lemma, bigram, and trigram features as indicated by the dots. Both bigram and trigram features
include backward (e.g. wi ∧ wi−1) and forward variants (wi ∧ wi+1).

gold standard and the actual system output. To
ensure that results are comparable across different
parsers, we have confirmed that the counts of nega-
tion instances remain unaffected, so as to guard
against the theoretical possibility of spurious sen-
tence boundaries separating (parts of) a negation
cue from (parts of) its arguments.

4 System Description

The task of Negation Resolution, in the context
of the CD annotations, is comprised of three sub-
tasks: negation cue identification, scope resolution,
and negated event resolution. Sherlock tackles the
two latter tasks (assuming that cue identification
is either provided by a separate module or accept-
ing gold-standard cues in its input), and basically
looks at NR as a classical sequence labeling prob-
lem. The main component in the Sherlock pipeline,
hence, is Wapiti (Lavergne et al., 2010), an open-
source implementation of a Conditional Random
Field (CRF) classifier, a discriminative model for
sequence labeling.

The token-wise annotations in CD contain mul-
tiple layers of information. Tokens may or may
not be negation cues and they can be either in- or
out-of-scope; in-scope tokens may or may not be
negated events, and are associated with each of the
cues they are negated by. Moreover, scopes may be
(partially) overlapping, as in Figure 1, where the
scope of without is contained within the scope of
never.

Before presenting the CRF with the annotations,
Sherlock flattens the scopes, converting the CD rep-
resentation internally by assigning one of six labels

to each token: out-of-scope, cue, substring cue, in-
scope, event, and negation stop (defined as the first
out-of-scope token after a sequence of in-scope to-
kens), as shown in the final row of Figure 1. Using
a fine-grained set of labels (rather than a minimal
one, with only out-of-scope, in-scope and event
labels) has been shown to yield better performance
in this task (Lapponi, 2012). The models for events
and in-scope tokens are trained separately; in the
event model all N-labeled tokens in Figure 1 have
an O label, and all E-labeled tokens in the scope
model have an N label.

The features used in the CRF model are listed
in Table 1.2 By default, Sherlock utilizes the same
feature set used by Lapponi et al. (2012b) (albeit
without the constituents available in the original
data), and runs Wapiti with default settings. Sher-
lock was originally developed to deal with fully
connected, single headed dependency trees, and
it was updated to be robust to the wider range of
dependency graphs submitted to the EPE shared
task. The dependency relation feature now records
the full set of relations for a token (so if token x is
both y’s a and z’s b, its dependency relation feature
would be a,b). The dependency distance and path
from cue features now assume graphs with (pos-
sible) re-entrancies and unconnected nodes, and
only record one of possibly several equally shortest
paths. If a path from a token to a cue is not found,
we simply record a −1 feature.

2Wapiti comes with a built-in pattern-based feature expan-
sion system. The patterns used for EPE Sherlock runs are avail-
able at https://github.com/ltgoslo/sherlock/
tree/master/patterns

https://github.com/ltgoslo/sherlock/tree/master/patterns
https://github.com/ltgoslo/sherlock/tree/master/patterns


UiO2 Elming et al. Stanford–Paris #6 Szeged #0 Paris–Stanford #7

ST 85.75 — 88.57 86.64 88.19
SM 80.00 81.27 80.43 78.42 80.14
ET 80.55 76.19 76.55 75.47 71.77
FN 66.41 67.94 65.37 62.15 60.48

Table 2: Results of the top-three performers at EPE 2017 (across all tasks), compared to the original UiO2

submission to *SEM 2012 and the best-performing configuration of Elming et al. (2013).

After classification, the full (overlapping) an-
notations are reconstructed using a set of post-
processing heuristics. It is important to note that
one of these heuristics in previous Sherlock builds
took advantage of the original annotations directly
to help with factuality detection; when a token clas-
sified as a negated event appeared within a certain
range of a token tagged as a modal (the MD tag),
its label was changed from negated event to in-
scope. This post-processing step has been removed
in order to accommodate arbitrary tag sets. The
remaining post-processing steps remain unchanged
from (Lapponi et al., 2012b). In short, we (1) scan
negation cues from left to right; (2) if b is found to
the left of a within a fixed-size window, with no
punctuation or S-labeled tokens in between, mark it
as negated by a; (3) assign all N-negated tokens to
the closest cue (again, breaking at punctuation and
S-labels); (4) if cue a negates b, assign all of its N-
labeled tokens to a as well. The current, EPE-ready
release of Sherlock is open source and available for
public download.3

5 EPE Shared Task Results in Context

Sherlock runs for the EPE shared tasks are evalu-
ated on a subset of the original *SEM evaluation
metrics: scope tokens (ST), scope match (SM),
event tokens (ET), and full negation (FN) F1 scores.
ST and ET are token-level scores for in-scope and
negated event tokens, respectively, where a true
positive is a correctly retrieved token instance of the
relevant class. The remaining measures are stricter,
counting true positives as perfectly matched full
scopes (SM), and requiring both a perfect scope
and event match in the strictest ‘full negation’ (FN)
metric. For the purpose of ranking participating
submissions, the EPE 2017 shared task considered
the FN metric as primary.

One important difference between previously

3https://github.com/ltgoslo/sherlock.

published Sherlock results is that EPE runs on the
held-out data set rely on gold-standard rather than
predicted cues, making it hard to relate evaluation
results directly. Table 2 shows development set F1

results from the original *SEM shared task runs
(here called UiO2, the name of the original system),
the best configuration from Elming et al. (2013),
and the top three overall EPE submissions; Table 3
shows the full batch of F1 scores for all teams and
runs, for both the CD development and evaluation
sets.

Unlike the EPE runs, UiO2 and Elming et al.
(2013) in Table 2 share the same set of pre-
processors, and differ only in terms of dependency
graphs. The former parses the data using the de-
fault MaltParser English model (Nivre et al., 2007),
while the latter uses the Mate parser (Bohnet, 2010)
converting the resulting phrase-structure trees into
dependencies using the Yamada-Matsumoto con-
version scheme. Both parsers are trained on Sec-
tions 2–21 of the Wall Street Journal portion of the
venerable Penn Treebank; additionally, the Malt-
Parser English model is augmented with data from
Question Bank.

In-depth analysis and discussion of the EPE
shared task results is an ongoing (and daunting)
task. It is important to take into consideration that
the system was designed and tuned around the orig-
inal set of sentences, tokens, lemmas, tags, and
their conversion to ‘basic’ Stanford Dependencies
from the PTB-style constituent trees in the origi-
nal CD data. This means that features, label sets,
and heuristics were tested (and discarded) empir-
ically, considering the Stanford scheme for syn-
tactic dependency trees. In the extreme, ‘chasing’
the best possible results in the EPE context would
mean repeating a similar process of feature engi-
neering for each submission. With that in mind,
simply ‘plugging in’ a new set of pre-processing
annotations nevertheless yields better ST and SM
performance than the original system (as shown in

https://github.com/ltgoslo/sherlock


Development Set Evaluation Set

Team Run SM ST ET FN SM ST ET FN

ECNU

0 80.85 89.10 73.83 62.69 80.10 88.78 66.87 62.33
1 79.57 87.98 76.63 63.78 80.10 89.14 66.25 62.33
2 80.00 89.36 73.58 62.69 80.38 88.37 68.30 62.33
3 79.14 88.69 72.90 61.60 80.10 89.11 68.75 62.69
4 80.43 87.77 75.96 65.37 78.35 88.28 67.69 60.89

Paris–Stanford

0 76.92 86.82 70.94 61.04 79.72 87.89 65.39 59.78
1 78.14 87.04 73.08 59.35 78.28 87.45 63.98 58.29
2 80.43 87.88 69.86 61.04 78.35 87.18 62.00 55.98
3 80.43 88.24 72.30 61.04 78.64 87.88 61.69 56.75
4 80.43 88.94 70.47 60.48 78.64 86.53 61.33 55.59
5 78.26 85.95 68.90 57.61 79.62 87.31 62.20 55.59
6 77.82 86.90 70.48 58.78 78.93 88.37 59.67 56.75
7 80.14 88.19 71.77 60.48 78.35 88.42 61.44 56.36
8 79.14 88.74 69.90 58.20 78.93 87.47 63.40 57.14
9 78.70 87.71 70.87 59.91 78.93 88.21 63.52 55.98

10 78.26 88.50 67.96 58.78 77.45 87.00 59.33 53.18
11 80.43 88.87 72.12 61.04 80.95 88.61 63.79 56.75

Peking

0 80.00 88.01 75.83 63.78 79.33 88.23 67.73 60.89
1 78.26 87.10 71.22 59.35 78.84 88.80 67.50 61.26
2 78.26 87.36 73.27 59.35
3 79.57 87.37 70.64 61.04
4 79.29 87.05 75.60 64.31 79.43 88.42 64.99 58.67
5 77.38 86.67 70.36 59.35 79.14 88.53 65.84 59.41

Prague

0 76.47 86.85 72.12 58.78 79.13 88.41 63.95 58.83
1 77.82 87.94 73.93 61.60 77.86 88.16 68.50 61.62
2 74.62 86.26 73.93 58.78 80.29 89.43 63.75 59.95
3 77.38 87.71 71.77 59.35 78.54 88.08 64.82 59.95
4 71.75 85.73 71.22 54.00 69.61 86.74 60.97 50.85

Stanford–Paris

0 80.85 88.23 76.28 64.85 82.08 89.65 69.70 65.13
1 80.85 88.83 75.83 64.31 80.10 88.53 68.69 63.05
2 81.27 88.34 75.36 63.78 80.38 88.92 68.32 63.75
3 79.57 88.18 74.88 62.69 81.52 89.56 67.69 64.10
4 78.70 87.30 75.60 61.60 79.52 88.73 69.38 63.05
5 80.43 88.95 75.93 63.78 80.67 88.70 70.34 64.80
6 80.43 88.57 76.55 65.37 82.63 89.11 70.34 66.16
7 80.43 89.93 76.19 62.69 81.23 88.92 68.52 63.75
8 80.43 89.18 75.00 61.60 82.35 89.71 69.75 64.45
9 80.00 88.72 74.64 62.15 79.52 89.11 67.29 61.62

10 82.10 89.99 77.21 65.89 81.80 89.13 70.34 65.13

Szeged

0 78.42 86.64 75.47 62.15 80.00 89.17 67.90 61.98
1 77.98 87.28 76.78 63.24 79.14 88.19 67.71 60.53
2 77.98 87.38 72.90 59.91 81.14 89.27 65.20 61.26
3 78.86 87.07 76.14 63.78 80.38 88.75 64.05 59.78
4 77.98 85.97 74.26 62.15 79.72 88.91 63.52 59.05

UPF
0 77.38 86.59 73.36 62.69 79.14 88.68 66.66 59.78
1 44.35 71.09 61.63 32.85 42.46 73.70 53.04 33.34
2 39.07 67.65 58.33 26.13 38.75 71.16 52.81 30.67

UW 0 76.47 85.79 77.67 62.15 77.67 86.99 63.72 56.75

Table 3: Final F1 scores for all Sherlock runs submitted by the eight participating teams.

Table 2, Stanford–Paris run #6 compared to UiO2;
recall that negated event resolution in the original
system was aided by ad-hoc heuristics on the CD
tags), which is an encouraging point of departure
for further analysis and comparison of the wealth
of pre-processing and parsing approaches provided
by the EPE shared task.

6 Conclusion & Outlook

In this paper we presented Sherlock, an updated
version of one of the top-performing systems in the
2012 *SEM shared task on Negation Resolution.
The system was augmented to accept arbitrary to-
kenization and dependency graphs, and serves as

one of three extrinsic evaluators in the EPE 2017
shared task. More in-depth discussion and anal-
ysis across different downstream applications is
ongoing work; for future work we would like to
conduct both quantitative and qualitative error anal-
ysis, grounded in a contrastive analysis of which
negation instances are comparatively easy or dif-
ficult for a majority of systems. Furthermore, we
plan to re-tune and calibrate the system around a
subset of the EPE submissions, attempting to make
the most of the individual strengths of the differ-
ent segmentations and morpho-syntactic analysis
approaches.
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