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Abstract

We give an overview of one of the
three downstream systems in the Extrin-
sic Parser Evaluation shared task of 2017:
the Trento–Gothenburg system for opin-
ion extraction. We describe the modifica-
tions required to make the system agnos-
tic to its input dependency representation,
and discuss how the input affects the vari-
ous submodules of the system. The results
of the EPE shared task are presented and
discussed, and to get a more detailed un-
derstanding of the effects of the dependen-
cies we run two of the submodules sepa-
rately. The results suggest that the module
where the effects are strongest is the opin-
ion holder extraction module, which can
be explained by the fact that this module
uses several dependency-based features.
For the other modules, the effects are hard
to measure.

1 Introduction

Applications that use dependency representations
of sentences are affected by a number of interact-
ing factors that can be hard to tease apart (Miyao
et al., 2008; Johansson and Nugues, 2008b; Elm-
ing et al., 2013). We expect the quality of the
parser to have an impact: in general, a good parser
should also lead to the downstream application be-
ing more successful. But this is not the end of the
story, because some types of dependency repre-
sentations may be more or less suitable for a given
application, or may be harder or easier for auto-
matic parsers to produce. In the Extrinsic Parser
Evaluation (EPE) shared task of 2017, we aim
to investigate these questions more systematically
by considering several parsers and representations,

and measuring their effect on three different down-
stream applications.

In this paper, we describe how the Trento–
Gothenburg opinion extraction system (Johans-
son and Moschitti, 2013) was adapted to the EPE
shared task. This system extracts opinion expres-
sions according to the annotation model in the
MPQA corpus (Wiebe et al., 2005). The system
consists of a number of submodules operating as a
pipeline, with a reranker that selects the final out-
put, and some of these modules use features de-
rived from a dependency-parsed representation of
the input sentence. For this reason, this applica-
tion is a useful testbed for measuring the effect of
representational design choices and the efficacy of
parsers.

We discuss how the opinion extraction system
is affected by the dependencies produced by the
parsers participating in the EPE shared task. In
particular, we are interested in the following ques-
tions:

• Can variations in the output of the opinion
extraction system be attributed to differences
in the dependency inputs, or to other aspects
of the input such as tokenization, lemmatiza-
tion, and tagging?
• In case the dependency structures do have an

effect, what parts of the analysis are affected
the most?
• Does the type of representation matter, or is

the choice of parser more important? For in-
stance, are the semantically oriented depen-
dency representations investigated in the SDP
Shared Task (Oepen et al., 2015) useful, or
are more traditional syntactic dependencies
more suitable?

We first give an overview of the opinion extrac-
tion task as defined by Wiebe et al. (2005), af-
ter which we give an overview of the system by



Johansson and Moschitti (2013) and how it was
adapted to the EPE shared task. Next, we present
the results for this task in the shared task, and we
carry out some additional experiments to try to un-
derstand to what extent and in what ways the qual-
ity of the system is affected by the parsers.

2 Task Description

The MPQA project (Wiebe et al., 2005) defined
an annotation scheme and created a corpus of an-
notated expressions of opinions (or private states).
The main building blocks in this scheme are three
types of linguistic expressions:

• direct-subjective expressions (DSEs), which
explitly mention emotions and opinions, such
as enjoy or disapproval, or evaluative speech
events, such as criticize or label;
• expressive-subjective elements (ESEs),

which do not explicitly mention an emotion
but in which the choice of words helps
us understand an attitude – such as great,
heresy, or fifth column;
• objective statement expressions (OSEs),

which refer to speech events that do not
express an opinion – such as says or
statement.

Each instance of these types of expressions is con-
nected to an opinion holder (or source, in the ter-
minology of Wiebe et al., 2005). This is a lingustic
expression that refers to the person expressing the
opinion or experiencing the emotion. This person
may not be explicitly mentioned in the text, for in-
stance if this is the writer of the text. Furthermore,
every DSE and ESE is associated with a polarity:
positive, negative, or neutral.1

To exemplify, in the sentence

“The report is full of absurdities,” Xirao-Nima said.

the expression full of absurdities is an ESE with a
negative polarity, said a DSE, also with a negative
polarity, and Xirao-Nima the opinion holder of the
DSE as well as of the ESE.

3 System Description

In this section, we give an overview of the opin-
ion analysis system described by Johansson and
Moschitti (2013). In particular, we focus on how

1Following Choi and Cardie (2010) and Johansson and
Moschitti (2013), we mapped the polarity value both to neu-
tral, and e.g. uncertain-positive to positive, etc.

the system was adapted for the EPE shared task,
and how the parts of the pipeline are affected by
the linguistic analysis provided by the participat-
ing parsing systems.

As a running example, Figure 1 shows how the
sentence above could be analyzed by a hypothet-
ical participant in the EPE shared task. In this
case, the representation follows the CoNLL-2008
format (Surdeanu et al., 2008) and consists of a
combination of syntactic edges, drawn above the
sentence, and semantic edges, drawn below. Each
word is tagged using a Penn Treebank-style (Mar-
cus et al., 1993) part-of-speech tag.

The report is full of absurdities Xirao-Nima said
DT NN VBZ JJ IN NNS NNP VBD

DET SBJ PRD AMOD PMOD

OBJ

SBJ

A1

A0

Figure 1: A hypothetical analysis of the example
sentence.

3.1 General Changes for the EPE Task

The system by Johansson and Moschitti (2013)
operates on the output of the parser by Johansson
and Nugues (2008a), which consists of a syntac-
tic dependency tree and a separate semantic de-
pendency graph representing PropBank and Nom-
Bank relations (Surdeanu et al., 2008), more or
less corresponding to Figure 1. Several aspects of
the system, including the design of features and a
number of heuristics, rely on the assumption that
the input conforms to this format. In particular, the
system relies on the fact that the syntactic side of
the representation is tree-structured.

In the reengineered system for the EPE shared
task, these assumptions had to be relaxed.
Most importantly, this applies to several features
based on paths through the dependency struc-
ture. The previous implementation assumed a
tree-structured syntactic graph, which means that
the path between two nodes in the graph is unique
and easy to compute. For instance, when deter-
mining that Xirao-Nima is the opinion holder of
the DSE said, we would extract one feature from
the graph in Figure 1 that describes that Xirao-
Nima is the syntactic subject (SBJ). The semantic
dependency edge (A0) would be represented as a
separate feature.

When relaxing the assumptions about the struc-



tural properties of the dependency graph, we in-
stead use features based on shortest paths. In
case there is no unique shortest path, i.e. if there
is more than one with the minimal length, we
create separate features for up to 8 paths with
the minimal length. For example, the minimal
path length between the DSE said and its opin-
ion holder Xirao-Nima is 1, and there are two
paths with this length: one via a syntactic edge
(nsubj), and one via a semantic edge (A0, repre-
senting the speaker role).

Furthermore, in the reengineered system we re-
moved the grammatical voice feature used by Jo-
hansson and Moschitti (2013) for the holder ex-
traction module. The reason is that this feature
was computed using hard-coded syntactic heuris-
tics that are not applicable for general dependency
representations. Hypothetically, we could imagine
participating systems representing the voice of a
verb as a morphological feature or via dependency
edges (e.g. the nsubj/nsubjpass distinction
in the Stanford representation).

Apart from these changes, we made no further
adaptation of the system. In particular, we would
like to point out that we did not have time to re-
design and optimize features for each individual
parser, which in principle could lead to a bias to-
wards parsers or representations resembling those
used by Johansson and Moschitti (2013). The
only feature selection we did for individual parsers
was that we investigated whether coarse-grained
or fine-grained part-of-speech tags were more ef-
fective, and we found in all cases that the latter
option was to be preferred.

3.2 Description of the Pipeline

The system by Johansson and Moschitti (2013) is
implemented as a sequence of three submodules,
followed by a reranker that picks the final output.

3.2.1 Extracting Opinion Expressions
The first step of the pipeline extracts opinion
expressions (DSEs, ESEs, OSEs) using a stan-
dard sequence labeler (Collins, 2002) operating
on the sequence of tokens. This sequence la-
beler extracts basic grammatical and lexical fea-
tures (word, lemma, and PoS tag), as well as prior
polarity and intensity features derived from the
lexicon created by Wilson et al. (2005). Features
based on words (and bigrams), lemmas, and PoS
tags, as well as polarity and intensity values, were
extracted in a window of size 3 around the word

in focus. Expression brackets are encoded using
IOB2 tags. The tagging model is trained using
the online Passive–Aggressive algorithm (Cram-
mer et al., 2006).

This sequence labeler is unchanged from the
implementation described by Johansson and Mos-
chitti (2013), but it is likely that there is a small
effect of the expressivity of the PoS tagset and the
quality of the PoS and lemma predictions.

3.2.2 Polarity Classification
Each subjective expression (ESE or DSE) is as-
signed a polarity value by a separate classifier (a
linear SVM). It uses a feature representation con-
sisting of bags of words, word bigrams, and PoS
tags inside the expression and in a small window
around it, as well as prior polarity and intensity
values from the MPQA lexicon. Again, this clas-
sifier is unchanged from the implementation by Jo-
hansson and Moschitti (2013).

3.2.3 Opinion Holder Extraction
The module that extracts opinion holders is also
a implemented as a linear SVM classifier. Given
an opinion expression, for instance the DSE said
in the example, the model assigns a score to each
non-punctuation token in the sentence that is not
contained in any opinion expression. In addition,
it considers two special cases: the writer entity,
representing the author of the text, and the implicit
entity, for cases where the holder is not explicitly
mentioned. The dependency node (or one of the
two special cases) that maximizes this score is se-
lected as the opinion holder.

The holder extraction module needed a number
of changes for the EPE shared task to make it more
representation-agnostic, as described in §3.1. The
reason that the holder extraction module required
more significant changes than other parts of the
system is that its feature set relies much more on
the structure of the dependency graph. This is be-
cause this task consists of determining a relation
between parts of the sentence; it is fairly similar to
event participant or semantic role filler extraction;
this is particularly true of DSEs, such as Xirao-
Nima being the holder and filling the speaker role
of said. For this reason, the feature set used by
this module is fairly similar to a typical set of fea-
tures used in semantic role labeling, relying heav-
ily on paths and other syntactic patterns. Systems
for such tasks tend to be sensitive to variations in
the input representation (Johansson and Nugues,



2008b; Miyao et al., 2008).

3.2.4 Interaction-based Reranking
Johansson and Moschitti (2013) found consider-
able improvements in all subtasks by designing
interaction-based features that describe the rela-
tions between different opinion expressions. For
instance, these features can describe that

• a DSE (said) is connected to an ESE (full of
absurdities) via an OBJ edge;
• a DSE and an ESE have the same opinion

holder (Xirao-Nima);
• a DSE is connected to an ESE via an OBJ

edge, and both of them are negative.

Three different groups of interaction features were
investigated, based respectively on expressions
holders, and polarity. In this work, we used a the
combination of all three groups.

Considering pairs of opinion expressions makes
inference harder, so Johansson and Moschitti
(2013) used a reranking approach: first gener-
ate the top k solutions from the expression tag-
ger, polarity classifier, and holder classifier, and
then rescore the k candidates using a linear scor-
ing model that uses the interaction-based features.

4 Experimenal Setup

The systems participating in the EPE shared task
were evaluated in three different subtasks, which
correspond to the evaluations by Johansson and
Moschitti (2013):

• marking up opinion expressions in the text,
and determining their type (DSE, OSE, or
ESE); for instance, that the example contains
an ESE (full of absurdities) and a DSE (said)
• determining the opinion holder for every ex-

tracted opinion expression; for instance, that
Xirao-Nima is the holder of the two expres-
sions in the example
• determining the polarity of each extracted

subjective expression (that is, DSEs and
ESEs); for instance, that the two expressions
in the examples are both negative

4.1 Intersection-based Scoring
In all four evaluation scenarios mentioned above,
the system marks up spans in the text (opinion
expressions and holders), which are then com-
pared to the gold-standard spans. However, the

boundaries of opinion expressions in the annota-
tion model of Wiebe et al. (2005) are not rigor-
ously defined and the inter-annotator agreement at
the boundary level tends to be low, particularly for
ESEs. This makes it natural to apply evaluation
metrics that allow for some leniency in evaluating
the boundaries.

Johansson and Moschitti (2013) evaluated their
system using intersection-based precision and re-
call metrics, which are based on the notion of span
coverage to measure how well a span s covers an-
other span s′:

c(s, s′) =
|s ∩ s′|
|s′|

The intersection s ∩ s′ was defined as the set of
shared tokens between the two spans, and the set
cardinality | · | as the number of tokens. In label-
aware evaluation scenarios, c(s, s′) was set to 0 if
the labels of s and s′ differ. The notion of span
coverage was then used to define precision and re-
call measures. The precision measures how well
the gold-standard spans cover the predicted spans,
and vice versa for the recall:

P =

∑
si ∈ S
gj ∈ G

c(gj , si)

|S| R =

∑
si ∈ S
gj ∈ G

c(si, gj)

|G|

where S is the set of spans predicted by the sys-
tem, and G the set of gold-standard spans.

In the EPE shared task, tokenization was pro-
vided by the different participating systems, which
required us to change the evaluation procedure to
take differences in tokenization into account. To
achieve this, we redefined the span coverage to
count the number of shared characters instead of
tokens.

4.2 Dataset Details
We trained and evaluated the system on version
2.0 of the MPQA corpus.2 This release contains
692 documents, out of which we discarded four
documents where the annotation was difficult to
align with the text, or which consisted mostly of
non-English text. We split the remaining 688 into
a training set (450 documents), a development set
(90 documents) and a test set (148 documents).
The split corresponds to the setup described by Jo-
hansson and Moschitti (2013), except that three
additional documents were removed. This is a

2
http://www.cs.pitt.edu/mpqa/databaserelease/



multi-domain corpus but split was done randomly,
so we do not expect that there are significant do-
main differences between the training and test sets.

5 Results

We first evaluate the system as a whole as de-
scribed in §4, and then consider individual mod-
ules in the pipeline to try to tease out what effects
are in play.

5.1 Overall Results

Table 1 shows the results of all the 44 participating
parsers evaluated for the three subtasks, as well as
the macro-average of the three scores. We observe
that the scores for the holder extraction task shows
much more variation than for the other tasks. As
discussed in §3.2.3, the holder extraction module
uses several features derived from the dependen-
cies in the input, so it is logical that this task is the
one where we see the largest effects of representa-
tional design choices and quality of the parsers.

5.2 Opinion Expression Extraction

We carried out an evaluation of the sequence la-
beler that marks up and labels opinion expressions
by running it in isolation, without the interaction-
based reranker. Table 2 shows the results. This
module uses token-level information such as word
forms, lemmas, and PoS tags, but no dependen-
cies. We can thus see this experiment as an extrin-
sic evaluation of the non-dependency part of the
input.

As the results show, the variation among sys-
tems is fairly small: if we remove the two outliers
(UPF runs 1 and 2), the F-measure standard de-
viation is just 0.54 and 0.33 in the development
and test set, respectively. This is likely because
most systems use similar tokenization procedures
and Penn Treebank-style tags. The two outliers by
the UPF team used an unconventional tokeniza-
tion that excludes many function words, and this
caused difficulties for the opinion expression tag-
ger.

Furthermore, we considered the differences be-
tween the expression extraction results in Ta-
bles 1 and 2: we would expect that since the
interaction-based reranker (§3.2.4) uses several
features based on the dependency representation,
the parser should have some impact. However,
we see no systematic effect: the reranker consis-
tently gives a relative improvement of around 5–

7%, which suggests that the choice of representa-
tion or parser does not have a strong impact here.
This result seems surprising; it is imaginable that
the dependency features that have an impact on the
reranker are relatively easy for parsers to extract,
but we would need to carry out more thorough in-
vestigations of features to answer this question in
a reliable manner.

5.3 Holder Extraction

We ran the holder extraction module separately,
giving the gold-standard opinion expressions as
input to the system. We refer to this experiment
as in vitro holder extraction. Table 3 shows the
results of this evaluation. As already mentioned,
there are clear differences in performance between
the different systems: the F-measure standard de-
viation on the development and test set is 3.28 and
2.53, respectively.

In an evaluation of this kind, the variation in
performance can be explained by several interact-
ing factors, including the design of the sentence
representation and the quality of the parser. To
exemplify the effects of the choice of parser, we
can consider the variation among parsers based on
Universal Dependencies (McDonald et al., 2013),
of which there are several: the F-measure in this
group ranges from about 59 points up to 65 points.

One clearly discernible effect of the represen-
tation is that the small group of parsers produc-
ing semantic dependencies (Paris-Stanford runs
0–1, Peking, UPF 1–2, UW) give considerably
lower holder extraction scores than those based
on more traditional syntactic dependencies (using
Universal Dependencies, Stanford Dependencies,
or CoNLL dependencies). The mean F-score on
the test set for the group of semantic parsers is
58.76, while the score for the syntactic parsers is
62.94. While this suggests that the more shallow
syntactic parsers give more reliable features for
this task, it should be noted that these parsers are
probably more similar to that originally used by
Johansson and Moschitti (2013), and that no effort
has been spent on feature design or tuning for the
semantically oriented parsers.

Among the systems producing purely syntac-
tic dependencies, it seems that the parser imple-
mentation has a stronger impact than the choice
of representation: among this group, the best-
performing and worst-performing are UD-based,
and the few CoNLL-based parsers achieve moder-



ate to high performance (Szeged, UPF run 0).

6 Conclusions

We presented the Trento–Gothenburg opinion ex-
traction system and how it was adapted for the
EPE shared task of 2017. The previous implemen-
tation by Johansson and Moschitti (2013) made a
number of assumptions about the structure of the
input – that it consisted of a CoNLL-style syn-
tactic tree and a separate set of semantic depen-
dencies – that had to be relaxed. The modified
system does not require a tree-structured input or
that semantic dependencies are stored separately
from the syntactic representation. Furthermore, a
few hand-crafted features (mainly the voice fea-
ture) assuming a CoNLL-style input have been re-
moved.

The outputs of the 44 participating parsers were
used to train the opinion extraction system, and we
investigated the general performance as well as the
performance of individual submodules. It turned
out that holder extraction seems to be the part of
the analysis that is most affected by the dependen-
cies, and for this subtask we saw much variation
among systems. For the other subtasks, the dif-
ferences attributable to the choice of dependencies
are negligible, and token-level linguistic informa-
tion such as tagging and lemmatization seems to
cause much of the variation.

Since the holder extraction task was the one
most affected by the dependencies, we ran this
module in isolation to highlight the differences.
We could see an effect of the choice of represen-
tation type, since it seems that semantically ori-
ented parsers, e.g. those coming from the SDP
shared task (Oepen et al., 2015), give weaker re-
sults. However, we should be careful to draw con-
clusions from this result, since it could possibly be
attributed to the semantic dependency parsers be-
ing more different from those used by Johansson
and Moschitti (2013), and they may require addi-
tional feature engineering and optimization. Apart
from this result, there seems to be more variation
among parsers using the same representation (e.g.
Universal Dependencies) than between different
types of syntactic dependencies.
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A Evaluation Scores

Development Test
System Run Expr Holder Polarity Macro Expr Holder Polarity Macro
ECNU 0 58.99 46.36 51.18 52.18 59.10 44.18 49.74 51.01

1 59.39 48.53 51.55 53.16 58.95 46.52 49.61 51.69
2 59.58 49.18 51.74 53.50 58.85 46.04 49.47 51.45
3 59.66 47.93 51.51 53.03 58.84 45.31 49.49 51.21
4 60.04 49.85 51.47 53.79 59.46 46.82 49.97 52.08

Paris-Stanford 0 60.07 43.90 51.66 51.88 59.30 43.34 49.23 50.62
1 60.28 45.60 51.69 52.52 59.00 44.04 49.31 50.78
2 59.88 50.66 51.43 53.99 59.49 48.06 49.60 52.38
3 59.87 50.40 51.31 53.86 58.91 49.05 49.52 52.49
4 59.83 50.45 51.23 53.84 59.28 47.76 49.40 52.15
5 60.01 50.93 51.41 54.12 59.31 48.82 49.69 52.61
6 59.74 49.87 51.11 53.57 59.52 46.98 49.44 51.98
7 60.12 50.12 51.23 53.82 59.55 47.66 50.00 52.40
8 60.12 50.50 51.21 53.94 59.07 48.16 49.47 52.23
9 60.45 50.41 51.51 54.12 59.27 48.54 49.41 52.41

10 59.98 50.59 51.31 53.96 58.81 48.09 49.14 52.01
11 60.19 49.92 51.46 53.86 59.16 47.82 49.20 52.06

Peking 0 59.06 45.41 50.18 51.55 58.14 43.33 48.67 50.05
1 58.65 45.32 50.52 51.50 58.15 43.78 48.90 50.28

Prague 0 59.51 46.78 50.72 52.34 59.33 45.08 49.49 51.30
1 59.89 47.93 51.54 53.12 59.06 46.46 49.50 51.67
2 59.48 46.63 50.26 52.12 59.15 44.32 49.60 51.02
3 59.75 45.88 51.23 52.29 58.89 44.46 49.11 50.82
4 59.42 46.27 50.76 52.15 58.84 44.38 48.79 50.67

Stanford-Paris 0 60.27 51.28 51.40 54.32 59.61 49.52 49.75 52.96
1 60.76 51.56 52.21 54.84 59.83 49.15 49.80 52.93
2 60.76 52.06 51.69 54.84 59.89 50.30 49.93 53.37
3 60.73 51.92 51.84 54.83 59.98 50.21 49.78 53.32
4 60.89 52.84 52.11 55.28 60.04 49.91 49.79 53.25
5 60.81 52.11 51.94 54.95 59.75 49.58 49.69 53.01
6 60.67 52.93 52.26 55.29 59.73 49.98 49.62 53.11
7 60.82 52.79 52.49 55.37 59.92 49.96 49.85 53.24
8 60.60 53.00 51.85 55.15 59.53 49.91 49.76 53.07
9 60.87 52.02 52.29 55.06 59.89 49.31 49.84 53.01

10 60.63 52.57 52.04 55.08 59.53 49.50 49.64 52.89
Szeged 0 59.82 49.21 52.47 53.83 59.33 50.61 49.87 53.27

1 59.76 49.68 52.43 53.96 59.32 50.52 50.02 53.29
2 59.33 48.99 51.93 53.42 59.05 48.62 49.70 52.46
3 59.29 48.86 52.12 53.42 59.53 48.49 50.26 52.76
4 59.68 48.81 51.89 53.46 58.90 47.91 49.75 52.19

UPF 0 59.60 50.01 51.19 53.60 59.26 48.81 49.37 52.48
1 56.04 45.68 47.57 49.76 56.02 45.51 46.81 49.45
2 54.87 41.08 47.19 47.71 55.12 42.60 46.19 47.97

UW 0 59.48 45.85 51.91 52.41 59.80 45.67 50.15 51.87

Table 1: F-scores on the development and test sets. For each subtask, the best result for each team is in
boldface and the best result overall is underlined.



Development Test
System Run P R F P R F
ECNU 0–3 65.62 49.27 56.28 66.69 48.84 56.38

4 66.06 49.68 56.71 66.83 49.38 56.80
Paris-Stanford 0 66.51 50.43 57.37 66.58 49.21 56.59

1 66.05 50.69 57.36 65.95 49.35 56.46
2–11 66.26 50.73 57.46 66.27 49.52 56.68

Peking 0–1 65.36 48.16 55.45 66.33 47.90 55.63
Prague 0 65.26 49.61 56.37 66.20 48.85 56.22

1 65.71 50.00 56.79 66.48 48.83 56.31
2 65.06 49.30 56.10 66.47 48.70 56.21
3 65.27 49.65 56.40 65.99 48.53 55.93
4 65.22 49.35 56.19 65.99 48.67 56.02

Stanford-Paris 0–10 65.87 50.46 57.15 66.45 49.76 56.90
Szeged 0–4 65.76 50.18 56.92 66.24 49.25 56.50
UPF 0 64.99 49.81 56.40 66.33 49.32 56.57

1 60.89 46.80 52.92 62.31 45.73 52.75
2 62.04 45.12 52.24 62.09 43.81 51.37

UW 0 65.76 50.18 56.92 66.24 49.25 56.50

Table 2: Expression extraction scores without reranking.

Development Test
System Run P R F P R F
ECNU 0 62.28 60.46 61.36 60.27 57.42 58.81

1 64.72 63.71 64.21 62.86 60.04 61.42
2 64.94 63.31 64.12 62.15 59.75 60.92
3 63.92 62.14 63.02 62.11 58.17 60.08
4 65.33 63.41 64.35 63.32 61.07 62.17

Paris-Stanford 0 66.13 51.96 58.19 65.04 51.32 57.37
1 66.80 51.48 58.15 65.80 52.73 58.55
2 67.65 63.62 65.57 65.87 61.30 63.50
3 67.61 62.91 65.18 66.22 62.43 64.27
4 68.15 63.71 65.86 65.10 61.75 63.38
5 67.83 64.13 65.93 66.62 62.03 64.24
6 66.34 63.63 64.96 64.21 60.27 62.18
7 67.57 62.35 64.85 65.78 60.96 63.28
8 67.10 63.81 65.41 65.59 62.42 63.97
9 68.19 61.71 64.79 66.77 61.04 63.78

10 68.24 63.48 65.78 65.86 60.92 63.30
11 66.33 62.77 64.50 64.90 60.56 62.66

Peking 0 66.02 54.07 59.45 65.63 53.64 59.04
1 66.21 54.05 59.52 66.57 54.55 59.96

Prague 0 65.41 59.79 62.47 62.61 57.21 59.79
1 64.21 61.65 62.91 62.31 59.74 61.00
2 65.59 57.05 61.02 63.45 54.63 58.71
3 63.50 58.89 61.11 61.26 56.72 58.90
4 63.93 59.96 61.88 61.00 56.25 58.53

Stanford-Paris 0 69.48 64.01 66.63 67.26 60.54 63.72
1 69.02 64.18 66.52 67.47 61.30 64.23
2 70.59 64.94 67.65 67.69 61.02 64.18
3 70.31 65.16 67.64 67.43 61.58 64.37
4 70.56 66.42 68.43 66.68 61.95 64.23
5 70.12 65.31 67.63 68.18 61.56 64.70
6 71.49 65.80 68.53 68.86 61.81 65.14
7 71.16 65.87 68.41 68.44 62.25 65.20
8 71.05 66.73 68.82 67.64 62.57 65.01
9 69.42 65.00 67.14 66.68 61.42 63.94

10 70.21 65.85 67.96 67.30 62.01 64.55
Szeged 0 63.98 62.03 62.99 66.73 65.04 65.88

1 64.53 62.69 63.60 67.04 65.63 66.33
2 66.44 60.77 63.48 66.05 60.45 63.13
3 64.93 61.31 63.06 65.35 61.28 63.25
4 62.68 61.81 62.24 63.37 61.66 62.51

UPF 0 65.70 60.41 62.94 66.25 61.19 63.62
1 63.87 56.29 59.84 64.65 56.71 60.42
2 58.98 49.63 53.90 61.03 51.50 55.86

UW 0 67.96 53.94 60.14 67.31 54.41 60.17

Table 3: In vitro holder extraction scores.


