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Abstract

We present our contribution to The First
Shared Task on Extrinsic Parser Evalua-
tion (EPE 2017). Our participant system,
the UDPipe, is an open-source pipeline
performing tokenization, morphological
analysis, part-of-speech tagging, lemma-
tization and dependency parsing. It is
trained in a language agnostic manner for
50 languages of the UD version 2. With a
relatively limited amount of training data
(200k tokens of English UD) and with-
out any English specific tuning, the sys-
tem achieves overall score 56.05, placing
as the 7th participant system.

1 Introduction

Language syntax has been a topic of interest and
research for hundreds of years. Syntactical anal-
ysis, most commonly in form of constituency or
dependency trees, has therefore been one of the
long-standing goals of computational linguistics.

Syntactic analysis was considered crucial to un-
derstand the semantics of a message. Lately,
statistical and especially neutral network models
have achieved superb results in natural language
processing without explicit syntax recognition, by
considering sentences to be merely a sequence of
words. However, quite recently, syntactic trees
have been shown to improve performance com-
pared to the sequential models, especially in tasks
requiring deeper understanding of text, like text
summarization (Kong et al., 2017) or textual en-
tailment (Hashimoto et al., 2016).

Consequently, syntactic parsing has its merit
both as a standalone application and as a prepro-
cessing step for further language processing, re-
sulting in two kinds of evaluation methods – ei-
ther intrinsic or extrinsic. While the intrinsic eval-

uation is straightforward and commonly used, ex-
trinsic evaluation is much more complex, and to
our best knowledge, there had been no standard-
ized set of tasks serving as extrinsic evaluation.

Recently, performance of raw text parsing has
been evaluated in the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Univer-
sal Dependencies (Zeman et al., 2017),1 provid-
ing a rich intrinsic evaluation of 33 systems across
81 treebanks in 49 languages of the latest ver-
sion of UD, the Universal Dependencies project
(Nivre et al., 2016), which seeks to develop cross-
linguistically consistent treebank annotation of
morphology and syntax.

The First Shared Task on Extrinsic Parser Eval-
uation (EPE 2017) proposes a parser extrinsic
evaluation metric, by means of three downstream
applications that are known to depend heavily on
syntactic analysis. All tasks, the biological event
extraction (Björne et al., 2009), negation scope
resolution (Lapponi et al., 2012) and fine-grained
opinion analysis (Johansson and Moschitti, 2013),
require pre-processing raw English texts into EPE
interchange format, which is a general format en-
coding arbitrary dependency graphs. Each such
graph represents a sentence and consists of sev-
eral nodes, which correspond to substrings of the
original document and include POS tags, lemmas
and arbitrary morphological features. The afore-
mentioned tasks then process these graphs and
compute individual evaluation metrics, whose un-
weighted combination is the final EPE score.

This paper describes performance of the UD-
Pipe system in the EPE 2017 shared task. UDPipe
(Straka and Straková, 2017)2 is an open-source
tool which automatically generates sentence seg-
mentation, tokenization, POS tagging, lemmatiza-

1
http://ufal.mff.cuni.cz/conll-2017-shared-task

2http://ufal.mff.cuni.cz/udpipe



tion and dependency trees, using UD version 2
treebanks as training data. This system has been
used both as a baseline system and also a partici-
pant system in CoNLL 2017 shared task, ranking
8th in the official (intrinsic) evaluation (Straka and
Straková, 2017).

Even if the EPE 2017 shared task is only in En-
glish, the submitted UDPipe system is trained in
a strictly language-agnostic manner without any
specific handling of English, using UD 2.0 train-
ing data only. It is therefore interesting to compare
it to other English-tailored participating systems.

In Section 2, we briefly discuss related work.
The UDPipe system including chosen hyperpa-
rameters for English is described in Section 3.
The extrinsic evaluation results of UDPipe are pre-
sented in Section 4, together with intrinsic metrics
and discussion of observed performance. Finally,
we conclude in Section 5.

2 Related Work

Deep neural networks have achieved remarkable
results in many areas of machine learning. In NLP,
end-to-end approaches were initially explored by
Collobert et al. (2011). With a practical method
for precomputing word embeddings (Mikolov
et al., 2013) and utilization of recurrent neu-
ral networks (Hochreiter and Schmidhuber, 1997;
Graves and Schmidhuber, 2005) and sequence-to-
sequence architecture (Sutskever et al., 2014; Cho
et al., 2014), deep neural networks achieved state-
of-the-art results in many NLP areas like POS
tagging (Ling et al., 2015), named entity recog-
nition (Yang et al., 2016) or machine translation
(Vaswani et al., 2017). The wave of neural net-
work parsers was started recently by Chen and
Manning (2014) who presented fast and accurate
transition-based parser. Many other parser mod-
els followed, employing various techniques like
stack LSTM (Dyer et al., 2015), global normaliza-
tion (Andor et al., 2016), biaffine attention (Dozat
and Manning, 2016) or recurrent neural network
grammars (Kuncoro et al., 2016), improving LAS
score in English and Chinese dependency parsing
by more than 2 points in 2016.

Although the sequence-to-sequence architec-
ture provides overwhelming performance com-
pared to traditional methods, there have been sev-
eral attempts to enhance it utilizing syntactic infor-
mation. Many such designs employ dependency
trees not merely as features, but either to encode

an input sentence according to syntactic tree (Tai
et al., 2015; Li et al., 2017; Chen et al., 2017) or
generate an output sentence as a dependency tree
(Wu et al., 2017; Rabinovich et al., 2017).

A comprehensive comparison of processing in-
put sentence either as a sequence or as a tree
was performed by Yogatama et al. (2016). Ad-
ditionally, the authors also considered the even-
tuality of utilizing task-specific syntax trees, both
in semi-supervised manner (i.e., bootstrapping the
task-specific syntax with manually annotated trees
and allowing their change later) and in unsuper-
vised manner. While the supervised syntax did
not demonstrate much improvement, both semi-
supervised and unsupervised approach (i.e., learn-
ing task-specific syntax) yielded substantial gains
in all four examined tasks.

3 UDPipe

UDPipe3 is an open-source pipeline perform-
ing tokenization, morphological analysis, part-of-
speech tagging, lemmatization and dependency
parsing. It is a simple-to-use tool consisting of one
binary and one model (per language) and can be
easily trained using solely data in CoNLL-U for-
mat, without additional linguistic knowledge on
the users’ part. Precompiled binaries for Win-
dows, Linux and OS X are available, as are bind-
ings for Python,4 Perl,5 Java and C#. Source code
is available on GitHub6 under MPL license.

The initial UDPipe 1.0 release (Straka et al.,
2016) processed CoNLL-U v1 files and was dis-
tributed with 36 pretrained models7 on UD 1.2
data. Updated UDPipe 1.1 and UDPipe 1.2
versions (Straka and Straková, 2017) process
CoNLL-U v2 files and were employed in CoNLL
2017 shared task, with UDPipe 1.1 serving as a
baseline system and UDPipe 1.2 attending as a
participant system. Recently, pretrained models
for 50 languages were released based on UD 2.0
data.8

All UDPipe models, especially the ones partici-
pating in the CoNLL 2017 shared task, have been
evaluated using several intrinsic metrics (Zeman
et al., 2017). Therefore, we employed these ex-
act models to participate in EPE 2017, in order to

3http://ufal.mff.cuni.cz/udpipe
4PyPI package ufal.udpipe
5CPAN package UFAL::UDPipe
6http://github.com/ufal/udpipe
7http://hdl.handle.net/11234/1-1659
8http://hdl.handle.net/11234/1-2364



facilitate comparison between the extrinsic and in-
trinsic measurements.

We now briefly describe the most recent ver-
sion, UDPipe 1.2, together the chosen hyperpa-
rameters for English model (according to perfor-
mance on the development set). More detailed
language-independent description of the system
and its gradual updates are available in Straka and
Straková (2017) and in Straka et al. (2016).

3.1 Tokenizer
The tokenizer performing sentence segmentation
and tokenization is trained purely with the UD
training data. The CoNLL-U format allows recon-
struction of the original pre-tokenized text using
the SpaceAfter=No feature, which indicates
that a given token was not followed by a space
separator in the original text. This facilitates train-
ing a model which predicts probability of a token
break after every character in a given plain text.

Sentence breaks can be trained analogously.
However, the CoNLL-U v1 format does not pro-
vide markup for paragraph and document bound-
aries. These are often indicated by visual layout
and/or spacing, but if not annotated in the data,
a sentence segmenter has to predict the sentence
boundary at the end of paragraph only from the
raw text. Considering the examples from the En-
glish UD data presented in Figure 1, such sentence
breaks confuse the segmenter and prompt it to split
sentences more often than necessary.

Keep in touch, / Mike / Michael J. McDermott
i have two options / using the metro or the air france bus / can
anybody tell me if the metro runs directly ...

Figure 1: Examples of sentence breaks (denoted
with slash) in English UD data which are hard to
predict without inter-sentence spacing and layout.

The CoNLL-U v2 format has been updated to in-
clude markup for paragraph and document bound-
aries. Unfortunately, only document boundaries
are marked in English UD 2.0 data, resulting in the
segmenter still being trained on sentence bound-
aries marked in Figure 1.

Technically, the UDPipe tokenizer predicts for
each character whether it is followed by a token
break, sentence break or none of above. Each
character is represented using randomly initialized
character embedding of dimension d and a bidi-
rectional GRU (Cho et al., 2014) network is em-
ployed during the prediction. The details of the

architecture, training and inference are explained
in Straka et al. (2016).

For English, embedding and GRU dimension
are set to 64. The network is trained using dropout
rate of 10% before and after the GRU cells for
100 epochs, each consisting of 200 batches con-
taining 50 segments of 50 characters. The network
weights are updated using Adam (Kingma and Ba,
2014) with initial learning rate of 0.002. Addition-
ally, space is assumed to always separate tokens
(due to no training token containing a space) and
the network is therefore trained to only predict to-
ken breaks which do not precede a space character.

3.2 Tagger

Part-of-speech tagging is performed in two steps:
firstly, a set of candidate (UPOS, XPOS, FEATS)
triples are generated for each token using its suf-
fix of length at most 4, and secondly, these candi-
dates are disambiguated on a sentence-level using
averaged perceptron (Collins, 2002) with Viterbi
decoding of order 3.

To facilitate the candidate generation, a guesser
dictionary with a predefined number of most com-
mon candidate triples for every possible suffix of
length 4 is constructed according to the training
data. Additionally, for every token in the train-
ing data, all its appearing (UPOS, XPOS, FEATS)
analyses are kept. In order to generate candi-
dates for a given token, two cases are considered.
If the token was present in the training data, all
its analyses appearing in the training data are re-
turned, together with 6 another (differing) most
common candidates from the guesser dictionary.
If the tokes was not present in the training data, 10
most common candidates from the guesser dictio-
nary are generated.

The candidates are disambiguated using aver-
aged perceptron utilizing a predefined rich set of
feature templates based on classification features
developed by Spoustová et al. (2009) for Czech.

A lemmatizer is nearly identical to the above de-
scribed part-of-speech tagger. For every token, the
candidates are (UPOS, lemma rule) pairs, where
the lemma rule is the shortest formula for generat-
ing a lemma from a given token, using any com-
bination of “remove a specific prefix“, “remove
a specific suffix“, “append a prefix“ and “append
a suffix“ operations. For English lemmatizer, at
most 4 candidates are generated for every token,
in regard of lesser number of lemmas (compared



to XPOS and morphological features).
Theoretically, both the part-of-speech tagging

and lemmatizing could be performed jointly us-
ing candidate quadruples, but such approach re-
sults in lower performance (we hypothesise that
the required number of candidate quadruples is too
high for the disambiguation step to be performed
effectively).

3.3 Dependency Parser
UDPipe utilizes fast transition-based neural de-
pendency parser inspired by Chen and Manning
(2014). The parser is based on a simple neural net-
work with just one hidden layer and without any
recurrent connections, using locally-normalized
scores.

The parser offers several transition systems,
from projective and partially non-projective to
fully non-projective. For English, projective arc-
standard system (Nivre, 2008) with both a dy-
namic oracle (Goldberg et al., 2014) and a search-
based oracle (Straka et al., 2015) yield the best
performance.

The parser employs FORM, UPOS, FEATS and
DEPREL embeddings. The form embeddings of
dimension 64 are precomputed with word2vec on
the training data only, with the following options:
word2vec -cbow 0 -size 64 -window 10 -negative 5

-hs 0 -sample 1e-1 -iter 15 -min-count 2

The other embeddings have dimension 20 and are
initialized randomly, and all embeddings are up-
dated during training.

The size of the hidden layer is 200. The network
is trained using SGD with minibatches of size 10,
starting with learning rate 0.01 and gradually de-
caying it to the final 0.001. L2 regularization with
weight 1.5e-6 is applied to reduce overfitting.

3.4 Training UDPipe
UDPipe is trained without any language specific
knowledge. Even if we have so far described spe-
cific hyperparameter values used by the English
models, the hyperparameters for each treebank are
extensively tuned on the development set.

The UD 2.0 data contain three English tree-
banks. Consequently, in addition to training
treebank-specific models, we also experiment with
training a model using a union of all these tree
treebanks. Even if the treebanks use different
XPOS tags and there are annotation inconsisten-
cies among the treebanks (which are observable
using the intrinsic evaluation of the merged model

on the individual treebanks’ test sets), we hypoth-
esise that the larger training data should benefit
real-word applications.

4 Experiments and Results

We submitted five different UDPipe configura-
tions to the EPE 2017 shared tasks. These runs
are described in Table 1. The run 0 is the English
treebank model of UDPipe 1.2 from the CoNLL
2017 shared task. The same model is used as a run
1, but with the tokenizer and sentence segmenter
provided by the EPE 2017 organizers. The con-
sequent run is the CoNLL 2017 shared task model
trained on all three English treebanks. The last two
runs are the English treebank models of UDPipe
1.1 and UDPipe 1.0. The first four runs are based
on UD 2.0, and only the last run utilizes UD 1.2
data. For comparison, we additionally include the
overall best participant system of the shared task.

The overall results of UDPipe in the EPE 2017
shared task are presented in Table 2. According to
the overall score, UDPipe placed 7th out of 8 par-
ticipants of the shared task, by a large margin com-
pared to the best participating system. The perfor-
mance on the three individual tasks are elaborated
in Tables 3, 4 and 5.

To enable interpretation of the results, we also
provide the intrinsic evaluation of the employed
models on the UD test sets in Table 6.

Overall Results
With the overall score of 56.05, UDPipe lacks
behind nearly all other participant systems. The
overall scores of the systems ranking immediately
above UDPipe are 56.23, 56.24, 56.65, 56.81 and
58.57, with the best system achieving respectable
score of 60.51. The best overall UDPipe score is
achieved by the English-only CoNLL 2017 UD-
Pipe 1.2 model with EPE-provided tokenization.

One of the probable cause of our lower perfor-
mance is the size of the training data – while the
UD 2.0 data offer training data of 200k tokens
(290k if all three English treebanks are merged),
most other participants use Wall Street Journal
corpus (Marcus et al., 1993) with 800k tokens,
sometimes also together with Brown corpus (Fran-
cis and Kucera, 1979) an GENIA corpus (Ohta
et al., 2002), resulting in circa 1700k tokens.

Furthermore, we emphasize that even though
the EPE 2017 shared task focused on English lan-
guage only, UDPipe is trained in a language ag-
nostic manner for 50 languages without any adap-



Run name Run Description Tokens
UD2.0 En/UDPipe/20 0 UDPipe 1.2, UD 2.0 English data, UDPipe tokenizer, beam size 20 204.5k
UD2.0 En/EPE/20 1 UDPipe 1.2, UD 2.0 English data, EPE provided tokenizer, beam size 20 204.5k
UD2.0 EnMerged/UDPipe/20 2 UDPipe 1.2, UD 2.0 English + English LinES + English ParTUT data,

UDPipe tokenizer, beam size 20
292.2k

UD2.0 EnMinus/UDPipe/5 3 UDPipe 1.1, 95% of UD 2.0 English data, UDPipe tokenizer, beam size 5 192.5k
UD1.2 En/UDPipe/5 4 UDPipe 1.0, UD 1.2 English data, UDPipe tokenizer, beam size 5 204.5k
Stanford-Paris 6 UD v1 enhanced dependencies, WSJ+Brown+GENIA data 1692.0k

Table 1: Description of employed systems

tation for English other than setting up the hyper-
parameters of the artificial neural networks.

Tokenization Issues
The overall results in Table 2 indicate that the
UDPipe tokenization is of lower quality – using
the EPE-provided tokenizer improves the overall
score by 2 points. By contrast, the evaluation
on the UD 2.0 data (the Words and Sentences
columns of Table 6) show opposite results, with
the EPE-provided tokenizer substantially degrad-
ing performance on UD 2.0 test sets.

We therefore conclude that the lower extrinsic
performance of UDPipe tokenization is a conse-
quence of the tokenization and sentence segmen-
tation annotated in the UD data. We argue that
to improve the annotation, one possible course of
action is to indicate paragraph boundaries in En-
glish UD 2.0 data, which might improve the per-
formance of trained sentence segmenter.

Merged English Treebanks
Although the model trained on the three merged
UD 2.0 English treebanks provide inconsistent
XPOS tags and shows slight performance drop on
the main English UD 2.0 treebank (cf. Table 6),
the extrinsic evaluation of this model shows no-
ticeable improvement. The improvement may be
attributed both to the increased size and diversity
of the training data, but also to the different anno-
tation, which might serve as a regularization.

According to the extrinsic results, the merged
model used together with the EPE-provided tok-
enizer should surpass the overall score of the best
submitted UDPipe run.

Negation Resolution Results Drop of Run 4
The Table 2 indicates a surprising drop of perfor-
mance of the run 4 (UDPipe 1.0 English model
trained using UD 1.2 data) on the Negation reso-
lution task, without a corresponding change on the
two other tasks. To explain this decrease, note that
the three EPE tasks are able to use only one kind

of POS tags, i.e., either UPOS or XPOS in case
of UDPipe. The decision on the type of POS tags
used is performed by the EPE organizers presum-
ably according to the performance on the develop-
ment set. For the UDPipe systems, XPOS tags are
utilized overwhelmingly, with the UPOS tags be-
ing used only once – by the run 4 on the Negation
resolution task. We therefore suggest that this is
the cause of the unexpected performance drop, be-
cause the UPOS tags are much more coarse than
the XPOS tags.

5 Conclusions and Future Work

We described the UDPipe systems used in the EPE
2017 shared task, presented the extrinsic and in-
trinsic evaluation of the submitted models, dis-
cussed the results and offered several hypotheses
to interpret the data. For the immediate future
work, we will carry out several experiments to
support the hypotheses:
• When the paragraph boundaries are anno-

tated in the UD data, does the trained sen-
tence segmenter achieve better performance?
• Can a rule-based English tokenizer also im-

prove the results?
• What effect would larger training data (like

WSJ) have?
• What performance would a state-of-the-art

dependency parser attain using the UD 2.0
data only?
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UDPipe run
Event Negation Opinion Overall
extraction resolution analysis score

0-UD2.0 En/UDPipe/20 43.58 58.83 59.79 54.07
1-UD2.0 En/EPE/20 45.54 61.62 61.00 56.05
2-UD2.0 EnMerged/UDPipe/20 44.25 59.95 58.71 54.30
3-UD2.0 EnMinus/UDPipe/5 42.70 59.95 58.90 53.85
4-UD1.2 En/UDPipe/5 43.22 50.85 58.53 50.86
Stanford-Paris, run 6 50.23 66.16 65.14 60.51

Table 2: Overall EPE evaluation results

UDPipe run
Approximate span & recursive mode
Precision Recall F1-score

0-UD2.0 En/UDPipe/20 53.84 36.61 43.58
1-UD2.0 En/EPE/20 56.35 38.21 45.54
2-UD2.0 EnMerged/UDPipe/20 53.22 37.87 44.25
3-UD2.0 EnMinus/UDPipe/5 51.91 36.27 42.70
4-UD1.2 En/UDPipe/5 51.71 37.12 43.22
Stanford-Paris, run 6 58.36 44.09 50.23

Table 3: Event extraction evaluation results

UDPipe run Scope match Scope tokens Event match Full negation
P R F P R F P R F P R F

0-UD2.0 En/UDPipe/20 99.39 65.73 79.13 90.12 86.76 88.41 66.23 61.82 63.95 99.10 41.83 58.83
1-UD2.0 En/EPE/20 98.77 64.26 77.86 88.58 87.75 88.16 70.44 66.67 68.50 99.16 44.70 61.62
2-UD2.0 EnMerged/UDPipe/20 99.40 67.34 80.29 91.45 87.49 89.43 65.81 61.82 63.75 99.12 42.97 59.95
3-UD2.0 EnMinus/UDPipe/5 99.38 64.92 78.54 90.84 85.48 88.08 66.46 63.25 64.82 99.12 42.97 59.95
4-UD1.2 En/UDPipe/5 97.81 54.03 69.61 90.40 83.36 86.74 62.11 59.88 60.97 98.90 34.22 50.85
Stanford-Paris, run 6 99.44 70.68 82.63 93.06 85.48 89.11 72.33 68.45 70.34 99.24 49.62 66.16

Table 4: Negation resolution evaluation results

UDPipe run Expressions Holders Polarity Holders (in vitro)
P R F P R F P R F P R F

0-UD2.0 En/UDPipe/20 64.32 55.07 59.33 49.03 41.71 45.08 54.44 45.36 49.49 62.61 57.21 59.79
1-UD2.0 En/EPE/20 63.57 55.15 59.06 48.81 44.31 46.46 53.68 45.93 49.50 62.31 59.74 61.00
2-UD2.0 EnMerged/UDPipe/20 64.57 54.58 59.15 50.01 39.79 44.32 54.93 45.22 49.60 63.45 54.63 58.71
3-UD2.0 EnMinus/UDPipe/5 64.15 54.43 58.89 48.20 41.25 44.46 54.30 44.82 49.11 61.26 56.72 58.90
4-UD1.2 En/UDPipe/5 63.98 54.46 58.84 48.38 40.99 44.38 53.99 44.50 48.79 61.00 56.25 58.53
Stanford-Paris, run 6 63.90 56.07 59.73 54.14 46.41 49.98 54.04 45.87 49.62 68.86 61.81 65.14

Table 5: Opinion analysis evaluation results

Row Data Plain text processing Using gold tokenization
Words Sents UPOS XPOS UAS LAS UPOS XPOS UAS LAS

0-UD2.0 En/UDPipe/20
UD 2.0 En 99.0 75.3 93.5 92.9 80.3 77.2 94.4 93.8 84.6 81.3
UD 2.0 EnMerged 98.9 79.5 91.8 —- 78.4 73.9 92.7 —- 81.4 76.6
UD 1.2 En 99.0 75.3 87.9 92.9 75.7 63.7 88.8 93.8 79.1 66.8

1-UD2.0 En/EPE/20
UD 2.0 En 96.2 59.9 90.7 90.0 74.6 71.8 94.4 93.8 84.6 81.3
UD 2.0 EnMerged 97.8 71.0 90.6 —- 75.8 71.4 92.7 —- 81.4 76.6
UD 1.2 En 96.2 59.9 85.1 90.0 70.3 58.7 88.8 93.8 79.1 66.8

2-UD2.0 EnMerged/UDPipe/20
UD 2.0 En 99.0 75.3 93.4 92.6 79.8 76.7 94.4 93.6 84.0 80.6
UD 2.0 EnMerged 98.9 79.5 92.0 —- 79.1 74.9 92.9 —- 82.2 77.7
UD 1.2 En 99.0 75.3 87.8 92.6 75.6 63.4 88.7 93.6 78.9 66.3

3-UD2.0 EnMinus/UDPipe/5
UD 2.0 En 98.7 73.2 93.1 92.4 78.9 75.8 94.5 93.9 83.8 80.7
UD 2.0 EnMerged 98.8 78.6 91.6 —- 77.7 73.1 92.8 —- 81.1 76.3
UD 1.2 En 98.7 73.2 87.5 92.4 74.6 62.6 88.9 93.9 78.6 66.3

4-UD1.2 En/UDPipe/5
UD 2.0 En 98.4 72.3 87.3 92.2 73.9 62.0 88.8 93.8 78.8 66.3
UD 2.0 EnMerged 98.7 77.8 86.5 —- 73.9 60.1 87.6 —- 77.2 63.0
UD 1.2 En 98.4 72.3 92.9 92.2 78.3 75.1 94.5 93.8 84.2 80.7

Table 6: Intrinsic evaluation
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1659–1666.

Tomoko Ohta, Yuka Tateisi, and Jin-Dong Kim.
2002. The genia corpus: An annotated research
abstract corpus in molecular biology domain.
In Proceedings of the Second International
Conference on Human Language Technology
Research. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, HLT ’02, pages 82–86.
http://dl.acm.org/citation.cfm?id=1289189.1289260.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code gen-
eration and semantic parsing. In Proceed-
ings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Lin-
guistics, Vancouver, Canada, pages 1139–1149.
http://aclweb.org/anthology/P17-1105.

Drahomı́ra “johanka” Spoustová, Jan Hajič, Jan
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