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Abstract

The First Shared Task on Extrinsic Parser
Evaluation (EPE 2017) compares different
dependency representations by evaluating
their impact on downstream applications
that utilize these parses for other text min-
ing tasks. In the Biomedical Event Extrac-
tion downstream task parses are evaluated
by using the Turku Event Extraction Sys-
tem (TEES) with the BioNLP’09 Shared
Task as the model challenge. The partic-
ipants parse the BioNLP’09 dataset, af-
ter which the TEES system is run, using
the parses as features for predicting events
on which the parses are compared. Eight
teams submitted a total of 44 runs gen-
erated with various parsers, and an addi-
tional 13 runs were produced with parsers
available via the TEES preprocessing sys-
tem. Although the TEES system has
been developed and optimized using the
Stanford Dependencies parsing scheme,
among the EPE submissions good perfor-
mance on the TEES system was achieved
also with the Universal Dependencies ver-
sion 1 scheme.

1 Introduction

The goal of the The First Shared Task on Ex-
trinsic Parser Evaluation (EPE 2017)1 is to evalu-
ate different dependency representations by com-
paring their performance on different downstream
systems (EPE17Overview, 2017). Three down-
stream applications are used, 1) Biomedical Event
Extraction, 2) Fine-Grained Opinion Analysis and
3) Negation Scope Resolution. In this paper we
present the results for the Biomedical Event Ex-
traction downstream application and describe the

1http://epe.nlpl.eu/

work on upgrading the TEES system to process
the varying parse schemes submitted for the task.

Biomedical Event Extraction refers to the pro-
cess of automatically detecting specific statements
of interest from biomedical scientific publica-
tions. The biomedical literature is expanding at
a rapid pace, with the central PubMed publication
database containing as of 2017 over 27 million ci-
tations2. Text mining is required to search this
mass of literature and to extract and summarize
the common themes across the millions of publi-
cations. Common tasks in biomedical text mining
include named entity recognition and normaliza-
tion (detection of mentions of e.g. genes and map-
ping them to standardized database ids) as well
as interaction extraction (detection of statements
of e.g. molecular interactions), where the result-
ing information can be applied for tasks such as
biochemical pathway curation.

In earlier work, biomedical interaction extrac-
tion has usually been approached through relation
extraction, where all pairs of named entities de-
tected within a span of text (usually a sentence)
can either have or not have a stated (sometimes
typed and directed) interaction linking them to-
gether. On the other hand, events consist of a trig-
ger word (often a verb) and 0–n related arguments,
some of which can be other events, allowing com-
plex nested structures. For example, the sentence
“Protein A regulates the binding of proteins B and
C” can be annotated with a two-event nested struc-
ture REGULATION(A, BINDING(B, C)).

2 TEES Overview

The Turku Event Extraction System was originally
developed for participation in the BioNLP’09
Shared Task on Biomedical Event Extraction. This
task utilized the GENIA corpus, which was the

2https://www.ncbi.nlm.nih.gov/pubmed/
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first large-scale, annotated resource (+10,000 sen-
tences) for biomedical events (Kim et al., 2008).
In total, 24 teams participated in this task, with
TEES achieving the first place with 51.95 F-score
(Kim et al., 2009). The TEES system has later
reached several first places in further shared tasks
and has been used as the engine behind sev-
eral PubMed-scale text mining resources (Björne,
2014).
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Figure 1: Event extraction. Before event extrac-
tion, (A) the text is split into sentences and parsed
to produce dependency parse graphs. Relying on
this information (B) keywords of interest (entities)
are detected in the parsed sentences, after which
(C) interaction edges can be detected between the
entities. The graph is then (D) unmerged into indi-
vidual events for which (E) various modifiers can
be detected. Finally, the generated events can be
(F) exported into the BioNLP Shared Task format.
Figure adapted from (Björne et al., 2012).

The TEES system was built around the ap-
proach of modelling events as a graph. With re-
lation extraction, graph-based approaches, such as
the graph-kernel, have demonstrated good perfor-
mance (Airola et al., 2008). If the word tokens
of the sentence are thought of as the nodes of a
graph, the relations can then be seen as edges.
This formalism can be extended for events by con-
sidering the trigger word as the root node of the

entire event, and all arguments as the outgoing
edges of this node. Arising from this model of
events as graphs, the TEES system is defined as
a pipeline of multiclass-classification steps (us-
ing SVMmulticlass, Tsochantaridis et al. (2005)),
the first of which detects word entities of interest
(nodes), the second the arguments between these
nodes (edges) and finally an unmerging step dupli-
cates certain nodes to separate overlapping events.
Optionally, a modifier detection step can be used
to detect event labels such as negation and specu-
lation (See Figure 1).

Dependency parses can similarly be modelled
as graphs, with tokens as nodes and the dependen-
cies as the edges. By starting from an automated
dependency analysis, the TEES event extraction
process can be seen as converting the syntactic
dependency parse graph into the semantic event
graph, the two graphs being linked via the shared
token nodes. However, while the tokens form di-
rectly the nodes of the dependency graph, the en-
tity and trigger nodes of the event graph may not
follow the same tokenization, and can often cover
multiple tokens (such as “human protein actin”).
To align the graphs, TEES uses a heuristic to map
each entity to the head token of the span of text
covered by that entity.

In the context of the EPE task, there are three
main attributes that determine the performance of
a parse when used with TEES. First, the tokeniza-
tion will determine at how fine-grained a level en-
tities get mapped to tokens. Second, the depen-
dencies determine the shortest path between two
tokens, which is the central source of information
used by TEES to detect the event argument edges.
Finally, the labeling of the dependency graph af-
fects the features generated: TEES uses the de-
pendency types for edge detection and the token
POS tags for entity detection. For the token POS
tags, EPE participants could either use a generic
POS attribute, or alternatively define both XPOS
and UPOS attributes. If both XPOS and UPOS
were used, the TEES system was run separately
for both tag types and the higher performing result
was used as the final result for that submission.

3 Adapting TEES for EPE

A number of improvements were developed for
the TEES system in order to more easily apply it
for the EPE task. In order to utilize the partici-
pants’ submissions, the system was updated to im-



port the JSON EPE file format.

3.1 Importing the EPE parses

The EPE JSON format is the common interchange
file format for the EPE task, allowing the partici-
pating parses to be used with the different down-
stream applications. As with the Interaction XML
format used in TEES, dependency parses are mod-
elled as graphs in the EPE format, with word to-
kens becoming the nodes and the dependency rela-
tions the edges of the graph. Each node must also
be bound unambiguously to the source text with
character offsets. While importing the EPE for-
mat is quite straightforward, challenges arise from
the variation in the valid ways in which parses can
be stored in this format.

For example, several of the participating sys-
tems produce parses where only tokens of interest
have defined nodes. Previously, all parses used by
TEES had annotated each word token in the sen-
tence, leading to several mechanisms that relied
on this implicit assumption to be true. In order to
handle the parses which provide only partial tok-
enization, the TEES parse importer was updated to
whitespace-tokenize and generate dummy tokens
for the spans of text not part of partially tokenized
parses.

TEES detects events by aligning the depen-
dency parse graph with the event graph, using the
parse tokens as shared nodes. However, the origi-
nal nodes of the event graph are the annotated en-
tities, which may consist of longer spans of text
than single tokens. In order to align the graphs,
each entity is mapped to a single head token using
a heuristic for detecting the syntactic head of the
parse subgraph contained within the entity. This
heuristic assigns each token initial scores (0 for to-
kens with no dependencies, 1 for tokens connected
by dependencies and -1 for special character to-
kens that should never be the head). After this, the
score of each governor token of a dependency is
increased to be higher than the score of the depen-
dent token, until scoring no longer changes or a
loop cutoff count is reached.

The variation in the parse schemes used by the
EPE task participants means that the downstream
applications can no longer rely on any parse spe-
cific information, such as conventions in POS tag
or dependency type naming. In earlier TEES ver-
sions the likelihood of loops happening in head to-
ken detection was reduced by only considering a

subset of primary dependency types for the itera-
tive scoring. Since these dependency types were
specific for the Stanford collapsed dependencies
scheme they could no longer be used with the var-
ious dependencies submitted for the EPE task, so
the limitation on dependency types was removed,
with only the loop count cutoff now terminating
loops if they happen. In practice, the impact on
performance was minimal and the new system no
longer depends on the specific naming of Stanford
collapsed dependency types.

3.2 Parse Format Conversion

Originally, the TEES preprocessor was to be up-
dated in order to provide another tool for con-
verting a number of parser output formats into
the EPE interchange format. This work was not
completely successful, but for most texts the up-
dated TEES parse converter can now reasonably
well convert back and forth between the EPE,
Penn TreeBank, Stanford Dependencies, CoNLL,
CoNLL-X, CoNLL-U and CoreNLP formats us-
ing Interaction XML as the interchange format.
The primary upgrade related to handling these for-
mats was the improved alignment of parsed tokens
with the input text, which is required in order to
convert common parser output formats into text-
bound formats such as EPE and Interaction XML.

Most parsers do not provide the character off-
sets in the original text for the generated tokens,
and this becomes a problem when such parsers
also modify the input text. Common modifica-
tions include file format related escapings such as
converting left and right parentheses into -LRB-
and -RRB- tags. Such modifications can be de-
tected and reversed relatively easily, but unfor-
tunately many parsers perform also more unpre-
dictable modifications, such as replacing British
spellings with American ones (such as ”labour”
becoming ”labor”).

Detecting the full list of such modifications
would be an open ended problem, so in order to
have a decent chance of aligning most modified
tokens with the input text the TEES preproces-
sor now uses the Needleman-Wunsch global align-
ment algorithm (Needleman and Wunsch, 1970).
A fast shortcut for aligning unmodified tokeniza-
tions that differ from the original text only in
whitespace is tried at first, with reversals of vari-
ous common parser modifications then being tried
consecutively, with the alignment with the least



mismatches being the chosen one. In this man-
ner, the updated TEES preprocessor can convert
most parse formats into text-bound ones, although
parses with extensive modifications of the original
text can still be difficult to align fully.

3.3 Updating the Preprocessor

In the TEES system, importing parses, parsing
and other preliminary tasks such as named entity
recognition are performed with the TEES prepro-
cessor tool. In previous versions, the preproces-
sor was implemented as a fixed pipeline of steps.
These steps were, in order, conversion of plain
text or the BioNLP Shared Task format to the In-
teraction XML format (the file format used inter-
nally by TEES), sentence splitting (with the GE-
NIA sentence splitter) (Sætre et al., 2007), named
entity recognition (with BANNER) (Leaman and
Gonzalez, 2008), constituency parsing (with the
BLLIP parser) (Charniak and Johnson, 2005), de-
pendency conversion (with the Stanford Tools) (de
Marneffe and Manning, 2008), named entity token
splitting, entity syntactic head detection and divi-
sion into train, devel and test sets. Individual steps
in the pipeline could be turned off or modified with
parameters, but the pipeline itself could not be re-
defined.

For the EPE task, the TEES preprocessor was
updated into a fully configurable pipeline. The
user can now define with the command line inter-
face any list of consecutive steps, with the only
limitations imposed by the input and output for-
mats of these steps. Most steps take as both input
and output an Interaction XML structure, but e.g.
beginning steps can convert an input in the form
of a directory of txt files into an Interaction XML
structure, and final export steps can likewise con-
vert an Interaction XML structure into a number
of output formats.

In earlier TEES versions, parameters could be
passed for the individual steps with a separate
parameter option, using the step name (e.g. --
steps A,B,C --parameters A.parameter=value). In
the fully customizable pipeline the same step may
appear multiple times, so the command line in-
terface was updated to use regular Python syn-
tax, evaluated at run-time, to configure both
the steps and their parameters (e.g. --steps
A(parameter=value),B,C). This approach allows
not only using the same step multiple times in the
pipeline, but also a consistent way of passing arbi-

trarily complex Python data structures as parame-
ters for any preprocessing step.
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Figure 2: The TEES Preprocessor. The TEES
Preprocessor is a fully configurable pipeline,
which in the example shown in this figure is used
to import an EPE task parse submission from
the EPE interchange format and insert it into the
BioNLP’09 Shared Task corpus from which exist-
ing parse information is removed. Once the parse
is inserted, other preprocessing steps such as entity
head token detection and entity token splitting are
performed to prepare the parsed corpus for event
extraction. The Interaction XML output from the
Preprocessor is used as the input for Event Extrac-
tion, which finally generates the predicted events
on which the different parses are evaluated in this
EPE downstream task.

The updated TEES Preprocessor can now be
used to perform a larger number of supporting
tasks useful for event extraction. For example,
the default parses for the BioNLP’09 Shared
Task GENIA corpus (installed with TEES) can
be exported to the EPE JSON format with the



pipeline [LOAD(corpusName=’GE09’), EX-
PORT(formats=’epe’)]. The original TEES
preprocessing pipeline was designed to pre-
pare an unparsed corpus for event extraction
by parsing it, and this same preprocessing
can now be performed with the customized
pipeline [LOAD, GENIA SPLITTER, BLLIP BIO,
STANFORD CONVERT, SPLIT NAMES,
FIND HEADS, SAVE]. These steps correspond to
the fixed preprocessing pipeline of earlier TEES
versions.

In evaluating the EPE task, pregenerated
parses provided by the participants need to
be inserted instead of running a parser (See
Figure 2). This can be achieved by changing
a few of the preprocessing steps, resulting in
the pipeline [LOAD, REMOVE ANALYSES,
REMOVE HEADS, MERGE SENTENCES, IM-
PORT PARSE(parseDir=’x’), SPLIT NAMES,
FIND HEADS, SAVE]. Here, existing parse in-
formation and the sentence division based on the
parse are removed from the loaded corpus using
the REMOVE ANALYSES, REMOVE HEADS
and MERGE SENTENCES steps. A new parse is
loaded (for example from a directory containing
files in the EPE JSON format) using the IM-
PORT PARSE step, and the rest of the pipeline
performs the named entity token splitting, syn-
tactic head detection and saving steps used in
the normal parsing pipeline. In this manner,
preprocessing steps can be freely combined to
quickly define new experimental setups.

4 EPE 2017 Results and Discussion

In total, 44 runs were submitted by eight teams for
the event downstream task. In addition, 13 “base-
line” runs were generated by the organizers using
the various parsers available via the TEES prepro-
cessing pipeline, leading to a total of 57 individual
parses for the biomedical event downstream task
(See Table 1, Appendix A).

4.1 Baselines

The baseline runs were generated by parsing the
BioNLP’09 corpus with parsers available via the
TEES preprocessing pipeline, then converting the
output to the EPE format, and finally running it
through the same EPE evaluation pipeline as the
participants’ submissions. Therefore, these base-
lines are not to be seen necessarily as baselines in
terms of performance, but as additional points of

comparison that could easily be generated by us-
ing publicly available parsing tools.

The first baseline in Table 1, the BioNLP’09
Analyses, uses the official, BioNLP’09 organizer
provided syntactic analyses from 2009. The anal-
yses used were the PTB trees produced with the
BLLIP parser using David McClosky’s biomedi-
cal parsing model and the dependency parses gen-
erated with the Stanford Converter (Kim et al.,
2009). The TEES preprocessor was used to insert
these supporting resources into the BioNLP’09
corpus, followed by exporting them to the EPE
format for evaluation as with the other baselines.
Running the event extraction system using these
official parses resulted in an F-score of 47.87,
somewhat lower than the official UTurku result of
51.95 from 2009. The difference is most likely
explained by the fact that the 2009 system in-
cluded e.g. two parallel entity detection systems
combined into an ensemble system and used a
more corpus-specific, rule-based unmerging sys-
tem. Therefore, the official BioNLP’09 UTurku
result is not directly comparable with the baselines
and the EPE submissions, all of which are evalu-
ated using the current version of TEES.

The other baselines use various combinations
of the BLLIP parser (commit 558adf6, Jan 9,
2016) (Charniak and Johnson, 2005), the Stan-
ford Converter (version 2012-03-09) (de Marn-
effe and Manning, 2008) and the SyntaxNet parser
(using the Parsey McParseface and Parsey Uni-
versal models) (Andor et al., 2016). The BLLIP
parser is used with either the standard English
model, or David McClosky’s biomedical parsing
model (McClosky, 2009). The highest perfor-
mance of 50.48 is achieved with the TEES de-
fault parsing settings, using BLLIP with the Mc-
Closky biomodel, followed by Stanford conver-
sion using the CCProcessed output format. The
BLLIP biomodel parses outperform every other
baseline parse regardless of the type of Stanford
conversion used, showing a consistent gain from
domain adapted parsing. At 47.52 F-score, the
SyntaxNet Parsey McParseface model has the best
performance out of all the non-biomodel baseline
parses, but the Parsey Universal (Universal De-
pendencies) model is behind all other baselines by
several percentage points at 42.79 F-score.



4.2 Submissions

A wide variety of submissions were provided
by the task participants, using several different
parsers and parsing approaches (See Table 1,
Appendix A). The event extraction performance
when using the various parses ranged from 42.70
to 50.26 F-score. The highest performance of
50.26 F-score was reached by the stanford-paris
run 0, using the Stanford Basic scheme with the
XPOS POS tag type. This parse, like nine out
of the ten best submissions (48.99–50.26) was
adapted for the biomedical domain by training also
on the GENIA corpus.

However, paris-stanford run 2, which was
trained only on the WSJ corpus, reached a perfor-
mance of 49.55, less than a percentage point be-
low the best performing domain adapted results.
Although too many conclusions cannot be drawn
from this single result, it is encouraging to see im-
proved performance for general English parsers on
this biomedical text mining task, perhaps indicat-
ing less need in the future for time-consuming and
resource-dependent domain adaptation.

For the 14 submissions that did not mention us-
ing a Universal Dependencies (Nivre et al., 2016,
2017) model, performance was in the range 42.84–
50.29. The 21 UD v1.x parses resulted in per-
formances in the range 43.22–50.23, and the nine
UD v2.0 submissions were in the range 42.70–
45.54. At least on the basis of these results, the UD
v1.x scheme can achieve very good performance
with an event extraction system such as TEES
which was originally developed on the Stanford
collapsed dependencies scheme. The UD v2.0
demonstrates overall lower performance, perhaps
partially explained by this newer scheme diverg-
ing further from the underlying dependency pars-
ing paradigms on which TEES still relies.

5 Conclusions

The First Shared Task on Extrinsic Parser Evalua-
tion (EPE 2017) explored the feasibility of evalu-
ating different parsers in light of the performance
of downstream applications that use these parses
as supporting analyses for some other text min-
ing task. For the TEES downstream task, 44 par-
ticipant submissions and 13 internally generated
parses were compared.

While the best performance was achieved with
the stanford-paris run 0, using the Stanford Basic
dependencies scheme, also the UD v1.x scheme

proved to work effectively with the existing event
extraction framework. However, more work is
still needed to make use of the UD v2.0 parses
for event extraction. In evaluating the results for
the EPE biomedical event extraction downstream
challenge, it is important to remember that the
TEES system has been developed and optimized
since 2009 using Stanford collapsed dependencies
parses.

Even if TEES is not bound to any single parse
scheme, the iterative development and optimiza-
tion using Stanford collapsed dependencies has no
doubt biased the system to some degree towards
parsing schemes similar to those collapsed depen-
dencies. Such “overfitting” is of course an issue
for any downstream task developed originally us-
ing a specific parser, but in any case means that
these results must not be assumed to be completely
objective evaluations of parser performance or
suitability for biomedical event extraction.

The work on adapting the TEES system to not
only use the EPE file format, but to work effi-
ciently with the varying schemes of the different
parsers, is published as part of the TEES open
source project3. The improvements to the pre-
processing system and the increased robustness in
handling different parse schemes should make the
system increasingly suitable for more varied text
mining tasks. The organizers’ work in adapting
the downstream applications to use the EPE for-
mat, as well as the participants’ efforts to export
their parses in this common interchange format,
build a strong foundation for continued shared
evaluation of parsers using downstream text min-
ing applications.
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A Biomedical Event Extraction Results

team run representation training POS
Development Set Evaluation Set

Approx. Span & Recursive Approx. Span & Recursive
P R F P R F

UTurku in BioNLP’09 55.62 51.54 53.50 58.48 46.73 51.95
BioNLP’09 Analyses BL 61.83 45.33 52.31 60.06 39.79 47.87
BLLIP-Bio, SF-Conv BL CCprocessed 60.70 52.04 56.04 58.80 44.22 50.48
BLLIP-Bio, SF-Conv BL basic 59.69 49.30 54.00 57.18 44.78 50.23
BLLIP-Bio, SF-Conv BL collapsed 59.84 51.70 55.47 58.10 43.75 49.91
BLLIP-Bio, SF-Conv BL collapsedTree 61.33 50.59 55.44 59.06 43.21 49.91
BLLIP-Bio, SF-Conv BL nonCollapsed 58.73 49.13 53.50 56.87 43.81 49.49

BLLIP, SF-Conv BL CCprocessed 56.20 45.16 50.08 55.18 41.04 47.07
BLLIP, SF-Conv BL basic 54.52 47.96 51.03 52.68 42.93 47.31
BLLIP, SF-Conv BL collapsed 64.51 42.93 51.55 58.23 37.15 45.36
BLLIP, SF-Conv BL collapsedTree 58.60 45.00 50.91 55.46 39.75 46.31
BLLIP, SF-Conv BL nonCollapsed 55.15 48.52 51.62 53.36 41.99 47.00

SyntaxNet BL 57.41 46.62 51.46 55.73 41.42 47.52
SyntaxNet BL UD 49.33 47.07 48.17 46.99 39.28 42.79

ecnu 0 UD v2.0 upos 54.12 45.61 49.50 49.48 39.00 43.62
ecnu 1 UD v2.0 upos 54.43 43.66 48.45 50.72 38.97 44.08
ecnu 2 UD v2.0 upos 52.91 45.28 48.80 52.24 40.23 45.46
ecnu 3 UD v2.0 upos 57.85 41.87 48.58 54.53 35.58 43.06
ecnu 4 UD v2.0 upos 62.90 43.66 51.54 60.69 35.76 45.00

paris-stanford 0 DM WSJ 00-20 (SDP Sub-Set) 58.26 43.43 49.76 59.11 37.71 46.04
paris-stanford 1 PAS WSJ 00-20 (SDP Sub-Set) 51.29 46.73 48.90 52.39 40.98 45.99
paris-stanford 2 UD v1 basic WSJ 00-20 (SDP Sub-Set) 54.71 48.13 51.21 55.79 44.56 49.55
paris-stanford 3 UD v1 enh WSJ 00-20 (SDP Sub-Set) 56.45 47.23 51.43 57.48 41.64 48.29
paris-stanford 4 UD v1 enh++ WSJ 00-20 (SDP Sub-Set) 61.53 46.00 52.64 58.55 39.50 47.17
paris-stanford 5 UD v1 enh++ dt WSJ 00-20 (SDP Sub-Set) 54.84 49.13 51.83 55.58 43.37 48.72
paris-stanford 6 UD v1 enh++ dt-- WSJ 00-20 (SDP Sub-Set) 57.98 43.94 49.99 58.11 39.19 46.81
paris-stanford 7 UD v1 basic WSJ, Brown, GENIA 61.05 49.02 54.38 57.69 42.80 49.14
paris-stanford 8 UD v1 enh WSJ, Brown, GENIA 55.62 49.86 52.58 54.90 44.75 49.31
paris-stanford 9 UD v1 enh++ WSJ, Brown, GENIA 58.68 49.58 53.75 58.03 43.02 49.41
paris-stanford 10 UD v1 enh++ dt WSJ, Brown, GENIA 60.04 46.84 52.62 59.88 40.19 48.10
paris-stanford 11 UD v1 enh++ dt-- WSJ, Brown, GENIA 61.63 44.77 51.86 58.92 40.07 47.70

peking 0 DM SDP 2015 54.46 41.31 46.98 59.28 34.22 43.39
peking 1 CCD 56.15 45.72 50.40 58.26 40.07 47.48
prague 0 UD v2.0 English 2.0 xpos 52.86 38.85 44.78 53.84 36.61 43.58
prague 1 UD v2.0 English 2.0 xpos 55.70 42.09 47.95 56.35 38.21 45.54
prague 2 UD v2.0 English, LinES, ParTUT 2.0 xpos 52.69 42.15 46.83 53.22 37.87 44.25
prague 3 UD v2.0 English 2.0 xpos 53.44 39.58 45.48 51.91 36.27 42.70
prague 4 UD v1.2 English 2.0 xpos 52.96 41.53 46.55 51.71 37.12 43.22

stanford-paris 0 Stanford Basic WSJ, Brown, GENIA xpos 55.75 49.92 52.67 56.93 45.03 50.29
stanford-paris 1 UD v1 basic WSJ 00-20 (SDP Sub-Set) xpos 60.73 46.73 52.82 57.59 40.76 47.73
stanford-paris 2 UD v1 enh WSJ 00-20 (SDP Sub-Set) xpos 61.40 47.46 53.54 57.24 40.98 47.76
stanford-paris 3 UD v1 enh++ WSJ 00-20 (SDP Sub-Set) xpos 58.88 48.97 53.47 56.76 42.74 48.76
stanford-paris 4 UD v1 enh++ dt WSJ 00-20 (SDP Sub-Set) xpos 63.62 46.00 53.39 58.86 40.51 47.99
stanford-paris 5 UD v1 basic WSJ, Brown, GENIA xpos 58.10 49.19 53.28 58.75 42.21 49.13
stanford-paris 6 UD v1 enh WSJ, Brown, GENIA xpos 59.51 50.42 54.59 58.36 44.09 50.23
stanford-paris 7 UD v1 enh++ WSJ, Brown, GENIA xpos 63.45 46.73 53.82 62.30 41.55 49.85
stanford-paris 8 UD v1 enh++ dt WSJ, Brown, GENIA xpos 59.19 51.37 55.00 57.47 44.47 50.14
stanford-paris 9 UD v1 enh++ dt-- WSJ 00-20 (SDP Sub-Set) xpos 58.15 49.92 53.72 55.29 43.21 48.51
stanford-paris 10 UD v1 enh++ dt-- WSJ, Brown, GENIA xpos 56.87 50.25 53.36 57.22 42.83 48.99

szeged 0 59.33 45.89 51.75 60.20 39.69 47.84
szeged 1 58.11 45.11 50.79 59.09 39.53 47.37
szeged 2 57.28 46.23 51.17 57.93 39.13 46.71
szeged 3 54.85 45.89 49.97 55.14 40.48 46.69
szeged 4 56.14 44.77 49.81 55.12 39.41 45.96

upf 0 SSyntS 53.91 46.28 49.80 53.21 41.36 46.54
upf 1 DSyntS 53.56 44.61 48.68 54.06 39.94 45.94
upf 2 PredArg 55.38 44.38 49.27 56.37 39.63 46.54
uw 0 DM SDP 2015 58.34 45.22 50.95 54.86 35.14 42.84

Table 1: EPE Biomedical Event Extraction downstream task results. SF-Conv refers to the Stanford
Dependencies Converter and BL to the baseline parses generated via the TEES preprocessor. In repre-
sentation, enh refers to enhanced and dt to diathesis. If no POS tag is defined, the generic EPE format
POS attribute was used. The primary metric of evaluation is the evaluation (test) set F-score, evaluated
using the official Task 1 Approximate Span & Recursive Mode of the BioNLP’09 Shared Task evaluation
program.


