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Lluis Companys 23, 08010 Barcelona, Spain
firstname.lastname@upf.edu

Abstract

This paper describes the three runs sub-
mitted to EPE 2017 by the TALN group
at Universitat Pompeu Fabra. The three
outputs correspond to three different lev-
els of linguistic abstraction: (i) a surface-
syntactic tree, (ii) a deep-syntactic tree,
and (iii) a predicate-argument graph. The
surface-syntactic tree is obtained with
an off-the-shelf parser trained on the
CoNLL’09 Penn Treebank, and the deeper
representations by running a sequence of
graph transduction grammars on the out-
put of the parser.
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2 Introduction

The NLP group at UPF (UPF-TALN) submitted
three different system outputs (“runs”) to be used
by the selected downstream applications; each of
the outputs corresponds to a different level of ab-
straction of the linguistic description:

• SSynt: surface-syntactic structures
(SSyntSs), i.e., syntactic trees with fine-
grained relations over all the words of a
sentence;

• DSynt: deep-syntactic structures (DSyntSs),
i.e., syntactic trees with coarse-grained rela-
tions over the meaning-bearing units of a sen-
tence;

• PredArg: predicate-argument structures
(PerdArgSs), i.e., directed acyclic graphs
with predicate-argument relations over the
meaning-bearing units of a sentence.

This stratified view is strongly influenced by the
Meaning-Text Theory (MTT) (Mel’čuk, 1988).
The MTT model supports fine-grained annotation
at the three main levels of the linguistic descrip-
tion of written language: semantics, syntax and
morphology, while facilitating a coherent transi-
tion between them via intermediate levels of deep-
syntax and deep-morphology. At each level, a
clearly defined type of linguistic phenomena is de-
scribed in terms of distinct dependency structures.

The idea behind submitting three very different
types of outputs is to see to what extent the down-
stream applications chosen by the organizers of
the shared task are sensitive to the variations in the
linguistic representation. In what follows, we de-
scribe the targeted dependency structures and the
respective systems used to obtain them.

3 Run 1: Surface-syntactic trees

3.1 Targeted dependency representation
For the surface-syntactic (SSynt) annotation,
many annotation schemes and parsers are avail-
able. We chose to use the representation followed
in the CoNLL’09 shared task on dependency pars-
ing (Hajič et al., 2009), because we believe it is
one of the most syntactically sound representa-
tions that are available; in particular:

(i) Its dependency tagset is fine-grained enough
to take into account the most basic syntac-
tic properties of English (37 different labels,
without counting composed and gapped rela-
tions).

(ii) One lexeme corresponds to one and only one
node in the tree. For instance, in a relative
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Figure 1: SSyntS for Women, children and men have been forced to leave the village last week.

clause, the relative pronoun is viewed from
the perspective of its function in the relative
clause and not from the perspective of its con-
junctive properties.

(iii) The subject is a dependent of the inflected top
verb, not of the non-finite verb, which might
also occur in the sentence. This accounts for
the syntactic agreement that holds between
the auxiliary and the subject; the relation be-
tween the non-finite verb and the subject is
more of a “semantic” one, and thus made ex-
plicit at a higher level of abstraction. The fi-
nite verb in an auxiliated construction is a de-
pendent of the closest auxiliary.

(iv) Subordinating and coordinating conjunctions
depend on the governor of the first group, and
govern the one of the second group. This hi-
erarchical approach accounts for the linking
properties of conjunctions. The only excep-
tion to this are the relative pronouns, as men-
tioned above.

Another advantage of the SSynt target represen-
tation is that it facilitates the mapping to the ab-
stract structures used in Runs 2 and 3.

3.2 Implementation

The surface syntactic (SSynt) analysis is per-
formed in three steps, including two pre-
processing steps and the proper parsing. First, the
text needs to be broken down into sentences, and
the sentences into tokens, as the surface syntac-
tic parser runs at sentence level and takes a one-
word-per-line format as input. For this task, we
use the Stanford Core NLP sentence splitter and
tokenizer.1 Then, in order to match the training
data of the syntactic parser, we replace some punc-
tuation marks that cannot be found in the training
set with equivalents that are present. For example,
left and right single quotation marks are replaced

1https://nlp.stanford.edu/software/

by one single straight quotation mark; double quo-
tation marks are replaced by two single straight
quotation marks; the different types of dashes are
all replaced by a classic dash; square brackets are
replaced by round brackets; etc. If these substitu-
tions do not take place, the parser tends to assign
proper noun tags to all unknown symbols, which
affects negatively the quality of the resulting struc-
ture. Finally, for lemmatizing, tagging and pars-
ing, we use the joint tagger and parser described
in (Bohnet and Nivre, 2012)2, which was trained
on the CoNLL’09 dataset (Hajič et al., 2009). Ta-
ble 1 summarizes the different steps followed for
this run.

Module Toolkit used
Sentence splitting Stanford Core NLP

Tokenization Stanford Core NLP
Character normalization In-house Script
Joint tagging and parsing (Bohnet and Nivre, 2012)

Speed ≈ 65 ms/sentence
Memory used ≈ 4GB

Table 1: Steps for surface-syntactic parsing

4 Run 2: Deep-syntactic trees

4.1 Targeted dependency representation

Deep syntactic (DSynt) structures are dependency
structures that capture the argumentative, attribu-
tive and coordinative relations between full words
of a sentence. Compared to SSynt structures,
in DSynt structures, functional prepositions and
conjunctions, auxiliaries, modals, or determiners
are removed. The abstraction degree of these
structures is in between the output of a syn-
tactic dependency parser as in Run 1 and the
output of a semantic role labeler as in Run 3:
on the one hand, they maintain the informa-
tion about the syntactic structure and relations,
but, on the other hand, some dependency la-
bels are oriented towards predicate-argument re-
lations, and the dependencies directly connect

2https://code.google.com/archive/p/
mate-tools/downloads

https://nlp.stanford.edu/software/
https://code.google.com/archive/p/mate-tools/downloads
https://code.google.com/archive/p/mate-tools/downloads
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Figure 2: DSyntS for Women, children and men have been forced to leave the village last week.

meaning-bearing units. Predicate-argument rela-
tions include I, II, III, IV, V, VI; modifier rela-
tions include ATTR (basic) and APPEND (back-
grounded); the other two relations are COORD
(for coordinations) and NAME (connecting parts
of proper nouns). In addition, each lexeme is asso-
ciated with attribute/value pairs that encode some
information such as part of speech, verbal finite-
ness, modality, aspect, tense, etc., and an align-
ment with the superficial nodes; the nodes are la-
beled with lemmas.

The degree of “semanticity” of DSynt structures
can be directly compared to Prague’s tectogram-
matical structures (PDT-tecto (Hajič et al., 2006)),
which contain autosemantic words only. Thanks
to the distinction between argumental and non-
argumental edges, tectogrammatical structures are
also trees, thus they maintain the syntactic struc-
ture of the sentence. The main differences be-
tween the two representations are: (i) in tec-
togrammatical structures, no distinction is made
between governed and non governed prepositions
and conjunctions, and (ii) in tectogrammatical
structures, the vocabulary used for edge labels
emphasizes “semantic” content over predicate-
argument information.

Although the annotations are not really of the
same nature, DSynt structures can be also con-
trasted to the Collapsed Stanford Dependencies
(SD) (de Marneffe and Manning, 2008). Collapsed
SDs differ from DSynt structures in that: (i) in
the same fashion as in the Prague Dependency
Treebank, they collapse only (but all) preposi-
tions, conjunctions and possessive clitics, whereas
DSynt structures omit all functional nodes; (ii)
they do not involve any removal of (syntactic) in-
formation since the meaning of the preposition re-
mains encoded in the label of the collapsed de-
pendency, while DSynt structures omit or gener-
alize the purely functional elements; (iii) they do
not add predicate-argument information compared
to the surface annotation. That is, Collapsed SDs
keep the surface-syntactic information, represent-
ing it in a different format, while DSynt structures

keep only deep-syntactic information.

4.2 Implementation

In order to obtain DSynt structures, we run a se-
quence of rule-based graph transducers on the out-
put of the SSynt parser. Our graph-transduction
grammars are thus rules that apply to a subgraph
of the input structure and produce a part of the out-
put structure. During the application of the rules,
both the input structure (covered by the leftside of
the rule) and the current state of the output struc-
ture at the moment of application of a rule (i.e., the
rightside of the rule) are available as context. The
output structure in one transduction is built incre-
mentally: the rules are all evaluated, the ones that
match a part of the input graph are applied, and
a first piece of the output graph is built; then the
rules are evaluated again, this time with the right-
side context as well, and another part of the output
graph is built; and so on; cf. (Bohnet and Wan-
ner, 2010). The transduction is over when no rule
is left that matches the combination of the leftside
and the rightside.

Grammars #rul. Description
ALL 165

Pre-Proc. 1 15
Assign default PB/NB IDs.
Mark passive, genitive,
possessive constructions.

Pre-Proc. 2 17 Mark hypernodes.

SSynt-DSynt 55

Wrap hypernodes.
Assign DSynt dependencies.
Transfer aspect/modality as attr.
Mark duplicate relations.
Mark relative clauses.

Post-Proc. 78
Relabel duplicate relations.
Reestablish gapped elements.
Mark coord. constructions.

Speed ≈ 25 ms/sentence
Memory used ≈ 300MB

Table 2: Rules for SSynt-DSynt mapping

The SSynt-DSynt mapping is based on the no-
tion of hypernode. A hypernode, known as syn-
tagm in linguistics, is any surface-syntactic con-
figuration with a cardinality ≥1 that corresponds
to a single deep-syntactic node. For example,
to leave or the village constitute hypernodes that



correspond to the DSynt nodes leave and village
respectively (see Figures 1 and 2). Hypernodes
can also contain more than two nodes, as in the
case of more complex analytical verb forms, e.g.,
have been forced, which corresponds to the node
force in the DSyntS of Figure 2. In this way,
the SSyntS–DSyntS correspondence boils down to
a correspondence between individual hypernodes
and between individual arcs, such that the trans-
duction embraces the following three subtasks: (i)
hypernode identification, (ii) DSynt tree recon-
struction, and (iii) DSynt arc labeling.3

Table 2 shows the different steps of the
SSynt-DSynt mapping. During a two-step pre-
processing, specific constructions and hypernodes
are marked. Auxiliaries, void conjunctions and de-
terminers are easy to identify, but to know which
prepositions belong to the valency pattern (sub-
categorization frame) of their governor, we need
to look it up in a lexicon extracted from Prop-
Bank (Palmer et al., 2005), and NomBank (Meyers
et al., 2004).4 The output of these pre-processing
steps is still a SSynt structure. The third transduc-
tion is the core of this module: it “wraps” the hy-
pernodes into a single node and manages the label-
ing of the edges, again looking at the PropBank-
based lexicon (i.e., at the valency pattern of the
predicates), together with the surface dependen-
cies. For instance, a subject of a passive verb is
mapped to a first argument (I), while the subject
of a passive verb is mapped to a second argument
(II). An object introduced by the functional prepo-
sition to is mapped to second argument in the case
of the predicate want, but to the third in the case
of give, etc. Consider, for illustration, a sample
rule from the SSynt-DSynt mapping in Figure 3.
This rule, in which we can see the leftside and
the rightside fields, collapses the functional prepo-
sitions (?Xl identified during the pre-processing
stage with the BLOCK=YES attribute/value pair)
with their dependent (?Yl).

The SSynt-DSynt mapping inevitably produces
duplications of argumental relations, which need
to be fixed. The post-processing grammar evalu-
ates the different argument duplications and mod-
ifies some edge labels in order to get closer to a
correct structure.5

3For more details about the SSynt-DSynt correspon-
dences, see (Ballesteros et al., 2015).

4See (Mille and Wanner, 2015).
558 rules in the post-processing grammar are dedicated to

mark coordinations for the representation on the next level;

Figure 3: A sample graph-transduction rule . ?
indicates a variable; ?Xl{} is a node, ?r→ is a re-
lation, a=b is an attribute/value pair.

For indicative purposes, an informal evaluation
showed a performance of about 97% or precision
and 99% of recall for hypernode identification,
and 87% of precision and 89% of recall for labeled
attachment score. On the EPE data, due to the cur-
rent state of the rule-based system, the output con-
tains 18 cases of duplicated arguments labels and
89 disconnected structures (out of approximately
40,000 sentences).

5 Run 3: Predicate-argument graphs

5.1 Targeted dependency representation
For this run, we target predicate-argument
(PredArg) structures with abstract semantic role
labels which also capture the underlying argu-
ment structure of predicative elements (which is
not made explicit in syntax), dropping coordina-
tive dependencies, given that the coordinating con-
junction is a predicate. Lexical units are tagged
according to several existing lexico-semantic re-
sources, namely PropBank, NomBank, VerbNet
(Schuler, 2005) and FrameNet (Fillmore et al.,
2002). The presented system is currently limited
to choose the first meaning for each word. During
this transition, we also aim at removing support
verbs; for the time being, this is restricted to light
be-constructions, that is, constructions in which
the second argument of be in the DSyntS is a pred-
icate P that can have a first argument and that does
not have a first argument in the structure. In this
case, the first argument of the light be becomes the
first argument of P in the PredArg representation.

The predicate-argument relations are sorted in
two subtypes: on the one hand, the “core” rela-

they are duplicates of other rules with other values, so not
counted in order not to distort the numbers. In general, about
30% of the total number of rules (90/313) are dedicated to
simply copy attribute/value pairs on the nodes; these rules
are not counted either in the totals shown in Table 2.
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Figure 4: Correspondence between a non-core re-
lation and a binary predicate

tions: Argument1, Argument2, Argument3, Ar-
gument4, Argument5, Argument6; and, on the
other hand, the “non-core” relations: Benefactive,
Direction, Extent, Location, Manner, Purpose,
Time, NonCore (which is the only underspecified
relation). The non-core labels come mainly from
the corresponding labels in the Penn Treebank,
that is, they are provided by the surface-syntactic
parser. Our system also uses the presence of cer-
tain prepositions in order to derive these labels
(e.g., for often indicates a purpose). The non-
core relations allow for avoiding the introduction
of new nodes without a counterpart in the origi-
nal sentences, which at the same time simplifies
the representation. These relations are actually a
compact representation of binary predicates, as il-
lustrated in Figure 4. The other available relations
are NAME (between parts of proper nouns), Set
(between a coordinating predicate and each of its
conjuncts), and Elaboration (which connects ele-
ments with no argumental relation).

The predicate-argument graphs show some sim-
ilarities with PropBank structures, with three main
differences, namely: (i) PropBank representations
capture existing dependencies governed by nomi-
nal and verbal elements only; (ii) PropBank repre-
sentations are forests of trees defined over individ-
ual lexemes or phrasal chunks; and (iii) PropBank
representations do not differentiate between func-
tional prepositions and meaning-bearing ones.

Predicate-argument structures are also compa-
rable to the target structures of the SemEval 2014
shared task on Broad-Coverage Semantic Depen-
dency Parsing (Oepen et al., 2014). For instance,
the DELPH-IN annotation, which is a rough con-

version of the Minimal Recursion Semantics tree-
bank (Oepen and Lønning, 2006) into bi-lexical
dependencies, also captures the lexical argument
(or valency) structure and eliminates some func-
tional elements (such as be copula and preposi-
tions). The Enju annotation (Miyao, 2006) is a
pure predicate-argument graph over all words of
a sentence. However, it distinguishes arguments
of functional elements (auxiliaries, infinitive and
dative TO, THAT, WHETHER, FOR complemen-
tizers, passive BY) in that they are attached to the
semantic heads of these elements (rather than to
the elements themselves). This facilitates the dis-
regard of functional elements—as in DSyntSs.6).

5.2 Implementation

In order to obtain the PredArg structures, we run
another sequence of graph-transducers on the out-
put of the DSynt parser (see Section 4.2 for a
general description of the grammars); that is, this
module takes as input the output provided by Run
2.

The first grammar in this module creates a pure
predicate-argument graph, with the mapping of
DSynt relations onto PredArg relations according
to PropBank/NomBank, and the introduction of
new predicates, as time on the right part of Fig-
ure 4.7 Coordinating conjunctions are linking ele-
ments in the Penn Treebank and DSynt represen-
tations; in a predicate-argument graph, they are
represented as predicates, which have all the con-
juncts as arguments and which receive all incom-
ing edges to the coordinated group; cf. Figure
5. Lexical units are assigned a VerbNet class.
Once this is done, a few post-processing gram-
mars are applied; they recover the shared argu-

6See (Ivanova et al., 2012) for a more complete overview
of Enju and DELPH-IN, and (Oepen et al., 2014) for a paral-
lel illustration of these and tectogrammatical structures.

7This kind of representation is useful for some applica-
tions such as paraphrasing, but having doubts about their rel-
evance for the EPE tasks, we did not submit a run based on
them.



ments in coordinated constructions, remove light
verbs, remove the distinction between external and
non-external arguments (i.e., for all predicates that
have an A0, we push all the arguments one rank
up: A0 becomes A1, A1 becomes A2, etc.), assign
FrameNet frames and introduce the non-core de-
pendencies – that is, turn the right part of Figure 4
into the left part.

PropBank, NomBank, VerbNet, and FrameNet
classes are assigned through a simple dictionary
lookup. For this purpose, we built dictionaries
that can be consulted by the graph-transduction
environment and that contain the classes and
their members, together with the mappings be-
tween them, using the information from SemLink
(Palmer, 2009).

Table 3 summarizes the different steps of this
module.8

Grammars #rul. Description
ALL 154

DSynt-Sem 59

Assign core dependencies.
Recover shared arguments.
Establish coord. conj. as predicates.
Assign VerbNet classes.

Post-Proc. 1 11 Recover shared arguments
in coordinated constructions.
Mark light verbs.

Post-Proc. 2 23 Remove light verbs.
Assign frames (FrameNet).

Post-Proc. 3 30 Normalize argument numberings.
Post-Proc. 4 31 Introduce non-core dependencies

Speed ≈ 55 ms/sentence
Memory used ≈ 300MB

Table 3: Rules for DSynt-PredArg mapping

Predicate-argument structures are supposed to
be connected acyclic graphs, such that each single
node can occupy more than one argumental posi-
tion. Due to the current limitations of the rule-
based system, 15 cases of double dependencies be-
tween nodes and 150 disconnected structures were
produced (out of approximately 40,000 sentences
in the EPE data).

6 Future work

We presented three system outputs to the shared
task: (i) a classic syntactic tree, (ii) a deep-
syntactic tree with functional words removed and
generalized edge labels, and (iii) a predicate-
argument graph that shows implicit and explicit
argumental relations. These three runs correspond

8As for the deep-syntactic analysis module, we take out
of the count 160 rules that are dedicated to transfer at-
tribute/value pairs only.

to three different levels of abstraction in the lin-
guistic analysis.

In the future, the current implementation will be
improved according to the following aspects:

• integration of a word sense disambiguation
component;

• removal of more support verbs in the
predicate-argument structures, in particular
through the identification of lexical functions
(Mel’čuk, 1996).

Furthermore, experiments will be carried out
on the effect of collapsing of all prepositions (not
only the functional ones) in another downstream
application, namely, abstractive summarization.
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I.A Mel’čuk. 1996. Lexical functions: A tool for the
description of lexical relations in the lexicon. In
L. Wanner, editor, Lexical Functions in Lexicogra-
phy and Natural Language Processing, Benjamins
Academic Publishers, Amsterdam, pages 37–102.
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